
MTH320 - Abstract Algebra I

by Dara Varam

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

August 31st, 2020

Semi-Groups:

A semi-group is a set that upholds the following two coniditions:

(D; �) whereD is a set and � is the binary operator acting on the set

1. 8a; b2Dwehave thata � b2D (Closure)

2. 8a; b; c2D; (a�b)�c=a� (b�c) (Associative)

What are some examples of Semi-Groups?

Consider (D; �);whereD=Z and � is the normal binary addition:

This is a semi-group because it satisfies the closure condition (i.e. 8a; b2Z;we have a+ b2Z).
Further, we have the associative condition satisfied trivially as well.

What is not a Semi-group?

Consider (D; �)whereD is the set of odd numbers; and � is the normal binary addition:

This set is not a semi-group because of the fact that if we take two odd integers, a; b2D, their
addition will result in an even number, which is not part of the set (Fails the closure condition).

Monoids:

(D; �) is a monoid if the following two conditions are satisfied:

1. (D; �) is a semi-group

2. 9e2D st e�d= d�e= d 8d2D (Identity)

This identity can be the following under the normal circumstances we are used to, such as 1 for
the set of integers under multiplication, and 0 for the set of integers under addition.

Examples of monoids: (Z;+) is a monoid because it is a semi-group and the identity exists.

Consider (Z+;+). This is not a monoid because the identity is 0 and 0 is not part of Z+: Similarly,
if we consider (D;+)whereD= set of evennumbers, this is also not a monoid because of the simple
fact that the identity, 1, is not an even number.

Groups:

(D; �) is a group if the following conditions are met:

1. (D; �) is a monoid, i.e. is also a semi-group with an identity element;

2. 8a2D;9a−12D st a�a−1= e (Inverse)
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Simple example of a group: (Z;+). The inverse of every element is the negation of that element.
For example, if we consider the number 3, we know that the inverse is −3, since 3+ (−3) gives us
0, which is the identity.

On the other hand, (Q; �) is not a group, because of the fact that the 0 in the set of rational numbers
is troublesome. Every number multiplied by 0 will result in 0, so we don't satisfy the identity
condition. In fact, the set (Q; �) is only a semi-group, not even a monoid. However, if we consider
the set (Q�; �), where D=Q excluding 0, then this will be a group.

Is (Z�; �) a group?

No. This is because of the fact that the inverse of any number under multiplication is 1/n , and
fractions are not part of the set of integers. In fact, this set is a semi-group and a monoid, but
because of the lack of the inverse relationship, it cannot be a group.

Integers modulo n (Not covered until way later in the course)

Consider the notation: (Zn; �), where Zn=f0;1;2; ... n−1g. This is the notion of the set of integers
modulo n.

Let us take a closer look at an example. Consider (Z4;+) as our set.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 1.

As we can see from our table, the additions taken place are not those which we are used to, because
we need to add w.r.t. modn, which is 4 in our case.

Is (Z4;+) a group? Yes. It is a monoid and every element has an inverse, though it may be hard
to see. The inverse of 1, for example, is 3, because 1+3=4=0mod4.

In fact, (Zn;+) is a group for all n.

if a2Zn; a
−1=n−a

a+n−a=n; andnmodn=0;which is the identity; e:

What about for (Zn;�), where � is the normal multiplication under mod n. Consider the table
for Z5:

� 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 3 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 2.

This is obviously not a group because of the threat the 0 poses. However, if we consider (Z5�; �),
where the � indicates the removal of the 0, then this is a group. Some of the inverses are as follows:

2−1=3 since 2 � 3=6=1mod5, and 1 is the identity for multiplication.
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4−1=4 since 4 � 4= 16=1mod5, etc.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 2nd, 2020

Abelian Groups:

A group (D; �) is called Abelian:

iff8a; b2D; a � b= b � a (Commutative)

Whenever you hear �Abelian group,� know that it is commutative. We usually say commutative
for rings though. Therefore, a group is considered Abelian if the elements commute.

Example: (Z10;+)!Abelian group because 8a;b2Z10;a+b=b+a. Remeber that (Zn;+) is always
a group.

Now consider (Z6�;�). This is not a group. Which axiom fails in this case? Let's go through it.
Summary of Group: Closure, associative, identity, inverse. Since we are considering Z6

�, we proceed
by providing a counterexample:

Consider (2�6 3)=0mod6; 02/ Z6�

Since 02/ Z6�;wehave found the product
of two elements inZ6� that result in

some valueOUTSIDEofZ6�

Therefore by counterexample; (Z6�;�) is not a group:

Therefore, this set fails the closure axiom and cannot be a semi-group, monoid or group. Note
that if a single axiom fails then we do not have to continue. There is, however, another reason
why (Z6�;�) is not a group. Conisder (2 �x)mod6= e=1. This element does not exist, and so the
inverse axiom has also failed for the set.

Fact: (Zn
� ;�) is a group iff n is prime. We cannot afford to forget this result. Remember this

fact.

(Z5�;�) is a group because 5 is a prime number. but (Z15
� ;�) is not a group because 15 is not a

prime number (15=3 � 5), and this set would fail the closure axiom because (3 � 5)mod15=0 and 0
is not part of Z15

� .

(Zn�;�), where n is assumed to be prime, is an Abelian group.

What are some examples of non-Abelian groups? We will get to this later on, but we will now
consider a group studied in Linear Algebra.

Consider: (Z;−). Check for closure, associative, identity, inverse.

Remember that e is an identity if e � a= a � e= a. Now let's consider it for this set. The trivial
identity asssumed is e=0.

However, let's take a=42Z. 4−0=/ 0−4. So this axiom clearly fails. Therefore, this set is a group
but not an Abelian group.

Food for thought: In real life, we only have addition and multiplication. Everything else is either
an extension or an inverse of these two operations. For example, in (Z;+), which is a group, the
number 5 has an inverse, −5. This is the additive inverse. Then we can see that, for example,
5− 3=5+ (−3). This is the correct way to consider numbers in Z. Furthermore, division should
be more clearly viewed as: 3

5
=5� 1

3
, etc.

This shows us that division and subtraction is non-Abelian.
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Let's take (D= fA 2R2�2 j det(A) =/ 0g;�). This means that D is under matrix multiplication.
This will be a group, but this will NOT be Abelian. Multiplication between matrices is not always
commutative, as we have learned in Linear Algebra. In �Street Language,� D is the set of all 2� 2
invertible matrices (since det(A)=/ 0), and the binary operation is the matrix multiplication.

i. Closure: The matrix multiplication of two 2� 2 matrices is another 2� 2 matrix

ii. Inverse: The matrices are assumed to be invertible because det(A)=/ 0:

iii. Identity: The identity matrix for R2�2 is I2, or�
1 0
0 1

�

iv. Associativity is clear. 8A;B;C 2D; (A�B)�C=A� (B �C)2D

The commutivity, however, fails because for A; B2D; A �B =/ B �A. Therefore, this group is
clearly not Abelian.

As a matter of fact, all invertible matrices of size n�n are groups, but they are not Abelian. This
is the best example of non-Abelian groups.

Uniqueness of Identity:

Let (D; �) be a group. Then D has exactly one identity, e. i.e. For any group, (D; �), the identity
is unique. Let's try to prove this:

Proof by contradiction: Assume f ; e2D, both are identities. We must show that e= f . Since e is
an identity of D, then e � f = f . Since f is also an identity of D, then f � e= e. i.e.:

�
e � f = e
e � f = f

�

This is clearly a contradiction unless e= f . Therefore, we can establish that the identity of a group
is unique.

Uniqueness of the Inverse:

If (D; �) is a group, then for every a2D; a−1 is unique. This means that each element of D has
one and only one inverse. Let's prove this.

Proof by contradiction: Assume we have an element, a2D, that has two inverses, bandw. We now
work to show that b=w for a−1 to be unique.

Hence: a � b= e and a �w= e. We also know that e is unique based on the previous proof.

a � b= e= a �w=) a � b= a �w
a � b � b=a � b �w

(a � b) � b=(a � b) �w
e � b= e �w

Therefore b=w
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Fact: For a group, (D;�) ; a � b= a � c=) b= c. We know that the identity for a group is unique,
and the inverse is unique. Even if we have: b � a= c � a=) b= c (Works from both sides). This is
the cancellation.

Consider (Z6;�). Let's take 2� 2=4=4mod6 and 2� 5= 10=4mod6. We can't cancel, because
that would imply 2� 2=2� 5. Cancellation is invalid.

What is the order of an element?

Assume (D; �) is a group. Take a2D, jaj= ord(a); order of a.

ord(a)=Smallest positive integer; n; s:t: a �a �a �a.... �a (n times) gives you e. i.e. an= e. If such
n does not exist, then ord(a)=1. We cannot find a positive integer, n, s.t. an= e.

Let's take (Z6;+). We know that is an Abelian group. Consider 34. This is (3 + 3+3+ 3)mod6.
Clearly, the exponent here is different to that we know in Z.

Similarly, for (Z11
� ;�), which is again, an Abelian group, 34=(3� 3� 3� 3)mod11.

Let's return to (Z6;+). What is ord(1)= j1j? We want 1n=0, i.e. the smallest possible n to give
us the identity, 0.

1+1+1+1+1+1=6mod6=0= e

So, j1j=6.

What about ord(0)? i.e. 0n=0, but 0=0, so the order of 0 is 1. i.e. ord(0)= j0j=1.

In general, jej=1 for all e: In words, this means that the order of the identity of the group is always
1.

What is j2j? We take the same idea to get 2n=0

2+2+2=6=mod6=0; so ord(2)=n=3

Similarly, ord(4)=3 because 4+4+4=12=0mod6. This same idea follows through for all integers
under Z6:

Now, for ord(5), we have 5+5+5+5+ 5+5= 30=0mod6, so j5j=6. It should make sense now
for all binary operations or elements in a set.

Notation:

Assume (D; �) is a group.

i. am �an=am+n (where m;n2Z)

ii. a−n=(a−1)n (n2Z+)

iii. (an)m=(a)nm

We can still use these properties. Let's take a few examples to solidify this;
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For (Z10;+),

25+26=211

This statement is true for all elements of Z10;under+:

In fact, that statement is true for any group of the form (Zn;+), or even (Z;+) itself. Remember
to always think of what planet you're in.

Now consider (Z10;+), and 2−3:Thismeans (2−1)3:

(2−1)= 8; since 2+8=0mod10
Hencewe have: 8+ 8+8= 24=4mod10

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 7th, 2020

Order of elements in groups:

To recall, by definition, the order of an element in a group is the smallest positive integer, n, where
an= e (identity).

Result: Assume (D; �) is a group and a2D s.t. ord(a)= jaj=n<1 (We are assuming the order
of a is finite).

if am= e for somem2Z+

Then: njm (i.e. n is a factor of m). In other words, m is divisible by n. How do we prove a result
like this?

Proof: We can write any number as m= kn+r, k> 0 and 06 r <n. We need to show that n is a
factor of m. To do this, remainder (r) is 0. If we show that r=0, then we are done with the proof.

Hypothesis: Since am= e, we have akn+r= e=akn � ar (See previous lecture notes for this fact).
Now we now that an= e (since n= jaj). Then we can see that: (an)k � ar= e.

Since an= e;

wehave: (e)k � ar= e

ek= e 8k> 0
so: e � (ar)= e

therefore:
ar= e

We know that since 06 r <n and jaj=n, r=/ n. But there has to be another value for r where if
we take ar;we get the identity. Note that: a0= e 8a2D. Therefore, we conclude that r=0.

Hence m= kn, i.e. the remainder, r is 0 and we have shown that njm.

The more results and facts you know in Abstract Algebra, then the easier the course is going to
be for you. This is why you need to remember all these facts mentioned in the notes.

Result: Last time we proved that each group has one identity and the inverse is unique. This is
an extension on that.
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Assume (D; �) is a group. Let a2D. Then jaj= ja−1j. i.e. a and its inverse have the same order.
Let's first take examples to demonstrate.

Consider (Z6;+). 1−1=5 (By simple observation). Now we can see that j1j= j5j.

j1j for (Z6;+):

(1+ 1+1+1+1+1)mod6=6mod6=0; therefore j1j=6

j5j for (Z6;+):

(5+ 5+5+5+5+5)mod6= 30mod6=0; therefore j5j=6

Proof: We have two cases. The first of which is if the order of a is infinite. The second is if the
order is finite. We will show for both cases.

First case: jaj=1 (i.e. an=/ e 8n2Z+) We now show that ja−1j=1.

We will do this by contradiction. Assume ja−1j=m<1. Thus: (a−m)= (a−1)m= e. Now we can
proceed by the following:

Notice that (a−m)= (a−1)m= e Byassumption
am � (a−1)m=am � e

(a � a−1)m= am � e= am

(e)m= am

This is a contradiction since jaj=1, but the proof shows that jaj is finite. Therefore jaj= ja−1j:

Now, assume jaj=m<1. Show that ja−1j=m. Let k= ja−1j:We need to show that k=m.

(a � a−1)k= ak � (a−1)k= ak � e= ak

But (a � a−1)k= ek= e

Therefore e= ak

So we can conclude that (By result 1) that mjk. If m is a factor of k,

e=(a � a−1)m= am � (a−1)m= e � (a−1)m

e=(a−1)m=) k jm

So we can establish that m= k since both are factors of each other. Therefore, we can see that for
any group, (D; �) where a2D, jaj= ja−1j.

Greatest Common Divisor:

gcd (m;n)

Result: Assume we have a group (D; �); a2D st jaj=m<1. If we know jaj=m, can we conlcude
anything on higher powers of a?

jakj= m
gcd (k;m)

8k2Z

The proof for this is a little technical and we will not cover it in the notes. However, we will consider
the following question. How do we use this result?
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Given a2D and jaj= 12, we can calculate any jakj. For example,

ja5j= 12
gcd (5; 12)

= 12
1
= 12

ja8j= 12
gcd (8; 12)

= 12
4
=3

ja9j= 12
gcd (9; 12)

= 12
3
=4

What about: ja−4j?
Weknow (By result 2) that ja−1j= 12

Then: j(a−1)4j= 12
gcd (4; 12)

= 12
4
=3

ja−10j= 12
gcd (10; 12)

= 6

We can safely conclude that given jaj, jakj= ja−kj. This is another useful result we can use.

Subgroups:

Let (D; �) be a group and H �D. We say H is a subgroup of D if (H; �) (Same binary operation)
is also a group. This is like in linear algebra. This is very similar to a subspace. A group is like a
vector space.

For example, every vector space under addition is a group.

Keep in mind that a subgroup is still a group. The only difference is that this group lives inside a
bigger group. However, do keep in mind the importance of following through with the same binary
operation.

Consider (Z;+). This is a group. However, let's take H �Z where H is the set of all odd integers.
This subset is not a group under the binary operation +. So not every subset of another set is also
a subgroup.

Result: Group (D; �). Assume H �D, H is a finite subset of D. D can be any group, but H
MUST be a finite subset of D.

Then: H <D. This notation means that H is a subgroup of D. H <D iff (H; �) is closed. i.e. the
subset has closure. We only need to check closure out of the 4 axioms, because the other three
(identity, inverse, associative) are automatically correct because of D.

Proof: Assume (H; �) is a subgroup of D. Hence (H; �) is closed. This is iff relation, so the first
direction is given. We need to prove the second direction.

Assume (H; �) is closed. We show that H <D (i.e. H is a subgroup of D). We simply need to
show that H is a group since it is already a subset of D.

1. (H; �) is closed by our hypothesis;

2. (H; �) is associative, and (D; �) is associative because it is a group;

3. We want to show for (H; �) that e2H and a−12H 8a2H. We do this in one step. Let
us show this.

Choose a2H. Start forming a; a2; a3; ... an. All of these are in H because H satisfies the closure
axiom. We cannot keep this going forever because H is a finite set. At some point, you will repeat
some elements.

am= ak for somem>k
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At some point we have am=ak for some value of m and k. We can assume that m>k.

We can see that ak has an inverse. To proceed, we do the following:

a−k � am= a−k � ak= e Binary operation a−k on both sides
am−k= a−k � ak

am−k= e

Since m>k, by closure we can see that am−k2H, and we also know that am−k=e; then e2H. We
can now see that the identity, e, is inH. Now, how do we come up with the inverse at the same time?

Firstly, we can rewrite am−k as a � am−k−1 (Simple rule of exponents).

a � am−k−1= e

we know that am−k2H; so:
am−k−12H (Closure under � )

Tohave an inversemeans:
a � (x)= e wherex is the inverse

We see now that a � (am−k−1)= e

andx=(am−k−1)
Therefore (a−1)= (am−k−1)

We can now see for some a2H, a−1 exists. Furthermore, we can see that a−12H. We don't need
to prove these results again, but we definitely need these results as tools to do other things. We
will see this in the first homework.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 9th, 2020

Last result from last lecture: If we have a group and we have a finite subset of this group then the
subset is a subgroup iff it is closed.

Example: (Z;+), E= fSet of all positive even integers; including 0g. Clearly we can see that E �Z.
Is (E;+) a subgroup of (Z;+)? First thing to note is that E is infinite here. The set of all positive
even integers is still an infinite set, as it is not �smaller� than the set of all integers. However, it is
also a subset of Z.

By observation, we can see that (E;+) is closed under addition. However, we can see clearly that
(E;+) does not have an inverse. So the inverse axiom fails since E only contains positive integers.
We don't want to think that subgroup is any different to a normal group - the only difference is
that the set for a subgroup is a subset of a bigger set.

Therefore, we can conclude that if we remove �finite� from the result / hypothesis introduced in last
class, then we have to treat it like normal and cannot simply count on closure. The conclusion of
the hypothesis could be right or wrong (because the hypothesis depends on our subset being finite).

Now, is (E;+) a subgroup? No. It is not a subgroup of (Z;+).

However, let E=fSetof all even integers; including0g. This is clearly an infinite set that is a subset
of Z. Is E a subgroup? Yes! Because if we go through the 4 axioms, it satsifies all of them, even
though it is not a finite set. We no longer depend on the hypothesis in this case - we go through
the normal procedure of seeing if a set is a group.

Result: (D; �) is a group and a2D, s.t. jaj=n<1. Then:

H = fa; a2; a3; ::: an(=e)g
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is a subgroup of (D; �), and the cardinality of H; jH j=n. [Cardinality = size of a set]

For example, if we have an element of order 5, then we can come up with a subgroup with 5
elements, and if we have an element of order 50, we can come up with a subgroup with 50 elements.

How do we prove this result? Since H is a finite subset, we can simply show that H is closed under
� and hence conclude that it is a subgroup of (D; �) by our previous result.

H = fa; a2; a3; :::: ; an(=e)g

Let x; y 2H: Show that x � y 2H
x=ai; y= ak 16 i; k6n

x � y= ai � ak=ai+k

Weneed to show ai+k2H
i+ k 2Z; i+ k= cn+ r (Bynumber theory)

06 r <n

ai+k= acn+r

=acn � ar=(an)c � ar

(an)c= e; sowe have e � ar

if r=0: a0= e2H
if r=/ 0: ar 2H because 06 r <n

Hence, H is closed under �, and therefore it has to be a subgroup of (D; �), because it is finite.
These things should stay in your mind.

What about if our set is infinite? How do we check for this? Do we need to go through all 4 axioms?
Let us see.

Result: (We can use this result in general, but usually we just use it if H is infinite) Assume (D; �)
is a group.

Then (H; �) is a subgroup of (D; �) iff a−1 � b2H 8a; b2H. We can use this to see if a finite
subgroup od (D; �) as mentioned above.

(a; b)need not be distinct:

Proof: Assume H <D (subgroup of D) and a; b2H. Then: a−1 � b2H, because H is closed and
both a−1 and b2H (Since H is a group). This one operation can show us everything we need to
know about H being a group. This is trivial.

However, there is a second direction we need to prove.

Assume a−1 � b2H 8a; b2H. Show that H<D. We saw what happens if we assume H<D, now
let's see the other way around and prove H <D, while assuming a−1 � b2H. We need to show 3
out of the 4 axioms, except associativity.

1. (Identity)

let a2H; and choose b= a

Hence a−1 � b= a−1 � a= e2H

Thereforewe can see thatH has an identity:
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2. (Inverse)

Let a2H: Wehave to show a−12H
a has an inverse;butwe know it is inD:

Wewant to show that it is inH:
Choose b= e2H

Thus a−1 � b= a−1 � e2H (Byassumption)
a−1 � e=a−12H

Therefore, each arbitrary element in H has an inverse that is also in H.

3. (Associativity) This is clear because H �D.

4. (Closure)

Let a; b2H: Show that a � b2H
Remember our assumption: a−1 � b2H

a−12H By (2:)
Since a−12H; then (a−1)−1 � b2H By our assumption

This may be a little tricky to understand, but we simply need to consider our assumption and the
fact that a−12H by (2.). Therefore, we can clearly see that H is closed.

So, simply put, H is a subgroup of D, and this can be used for both finite and infinite subsets.

End of proof

Symmetry group of equilateral M:
a

bc

Let us consider a rotation:

f1=RotateM about center 120� clockwise

f1:
�
a b c
b c a

�
i.e.

c

ab
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Let's take another rotation:

f2=RotateM 240� clockwise

f2:
�
a b c
c a b

�

b

ca

The indentity rotation:

f3= e=Rotate 360� clockwise

f3= e:
�
a b c
a b c

�
a

bc

Now let us consider some reflections. Consider the following:

a

bc

f4=Reflection about vertex a

f4:
�
a b c
a c b

�
a

cb
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Another reflection for us to consider:

f5=Reflection about b

a

bc

f5:
�
a b c
c b a

�
c

ba

A similar thing is done for f6, which is a reflection about c:

f6:
�
a b c
b a c

�

b

ac

Now let us see all the rotations:�
f1:
�
a b c
b c a

�
; f2:

�
a b c
c a b

�
; e:
�
a b c
a b c

�
; f4:

�
a b c
a c b

�
; f5:

�
a b c
c b a

�
; f6:

�
a b c
b a c

��
You view each as a function as such:

K: fa; b; cg!fa; b; cg

For f1:
K(a)= b; K(b)= c; K(c)= a

This is clearly a finite set. Our binary operation, �, are the compositions, �. We can do the Cayley
table for this finite set to see whether it is a group or not. We all this group of 6 elements the
symmetry group of equilateral triangles.
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Remember compositions and composite functions from Calculus 1. Let us take:

f1 � f5=
�
a b c
a c b

�
Note that f1 � f5= f1(f5). This is another tricky thing to notice, but it is very doable if you look
over it again. We take the first one, go to the second one, then come back to the first one and see
the corresponding value.

f1 � f5= f4!There is closure:

To see everything else, then we can use the Cayley table. The symmetries of an equilateral triangle
form a group. It is in fact a non-Abelian group with 6 elements. Let us see the Cayley table to
cement this idea (Covered in homework 1).

� f1 f2 f3= e f4 f5 f6
f1
f2
f3= e
f4
f5
f6

Table 3.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 14th, 2020

Cosets:

Take (D; �) as a group, (H; �) (same binary operator) is a subgroup of D. Let a2D. Then:

a �H = fa �h s:t: h2H g

This set is called the left coset of H. We can also consider the right coset, the definition is self
explanatory, but traditionally we will take the left coset. H �a=fh �a s:t: h2Hg (Right coset).
If the group is not Abelian, we know for sure that a �h=/ h �a. Remember this fact to see that the
left coset is different to the right coset.

Let us take (Z;+)=(D; �). If we then take (3Z;+)=(H; �), then we can easily check that (3Z;+)
is a subgroup of (Z; �). Note that 3Z is the set of the multiples of 3.

3Z= f:::: ;−6;−3; 0; 3; 6; :::: g

Select a; b23Z. Show that a−1 � b23Z, i.e. a−1+ b23Z. If we use this condition, we can see that
this is clearly a subgroup of (D; �).

Hence:

a=3n and b=3m for somen;m2Z

a−1=−3n
a−1 � b= a−1+ b

=−3n+3m
=3(−n+m)

Since we know that n;m2Z, then we know for sure that 3(−n+m) is a multiple of 3;and therefore
3Z is a subgroup of Z under addition.

14



Now, let us see the following:

1+3Z is the left coset of 3Z

In fact: 1+ 3Z= f :::: ;−5;−2; 1; 4; 7; 10; :::: g

Note that 12/ 3Z. Will 1+ 3Z be a subgroup? No. This is because the identity is not present in
this set, or rather this coset. In fact, for any (H; �), and for any a2D; a2/ H, a �H is NEVER a
subgroup of D. This is clear because e would never be in a �H .

Proof: Assume e2 a �H. This means:

a �h= e for someh2H
a �h � h−1= e �h−1

a=h−1

This is a contradiction, because we assumed that a2/ H.

(1+ 3Z)\ (3Z)=?

Let us take 923Z. If we take (9+3Z), we would have a left coset of 3Z. The observation here is that
if we select a2D and a2H, then we would not come up with a new left coset. It would simply mean
that: a �H=H. If we want to come up with a new left coset, we should select some a2D anda2/H.

Now, let us see (2+ 3Z), where 22/ 3Z. Furthermore, 22/ 1+3Z.

(2+3Z)= f ::: ;−4;−1; 2; 5; 8; ::: g

(2+ 3Z)\ (1+3Z)=?

That means that these two cosets of 3Z contain nothing in common. Furthermore, we have:

(2+ 3Z)\ (3Z)=?

We have exactly three left cosets of 3Z. These are: 0 + 3Z; 1 + 3Z; 2 + 3Z. These are the only
distinct left cosets of 3Z. We can conclude that the UNION of all distinct cosets is the whole group.

(3Z)[ (1+3Z)[ (2+ 3Z)=Z

The intersection of any two cosets is ?. Further, we can see that, for example, 4+ 3Z=1+ 3Z.
As a matter of fact, this is exactly where we get the modulo n function.

4+3Z=1+ (3+3Z)= 1+3Z

12+3Z=3 � 4+3Z=3Z

What can we observe from this? Assume a �H is a left coset. Let us select b2 a �H.

b �H =a �H

Because of the fact that b 2 a �H. We can demonstrate this with an example. For example, let
b=32 3Z. Then b+H =a+H.

Let us take 5Z. Find all the left cosets of this subgroup. 0 through 4 + 5Z. These cosets have
absolutely nothing in common.

15



By the previous examples and demonstration, we can see that Zn contains numbers only from
0 ton− 1. We can interestingly write the following:

Z3= f12; 13; 26g

12=0 inZ3

13=1 inZ3

26=2 inZ3

We don't have to deal with these bigger numbers because we know that those bigger numbers are
nothing but the smaller ones in any case. This is the beauty of the concept of the left coset.

Result: (D; �) is a group, and (H; �) is a subgroup of D.

1. a �H =H iff a2H

2. a �H = b �H for some a; b2D iff b−1 � a2H. This is how we know that two left cosets are
the same.

Proof:

a; b2D and a �H = b �H. Show that b−1 � a2H.

a �H = b �H impliesa �h1= b �h2 for someh1; h22H
Hence a �h1 �h2−1= b �h2 �h2−1= b

This implies b−1 � a �h1 �h2−1= b−1 � b= e

b−1 � a=h2 �h1−1 (Weeliminateh2)
SinceH is a subgroup; thenh2 �h1−12H

then b−1 � a2H

Second direction: Assume b−1 � a2H. Show that a �H = b �H

If wewant to show that two sets are equal;
a �H � b �H and b �H � a �H

Therefore a �H = b �H

Let x2 a �H. Show that x2 b �H.

x= a �h for someh2H
Since b−1 � a2H =) b−1 � a=h1 for someh12H

a= b �h1
x=a �h= b �h1 �h h �h12H

therefore b �h1 �h2 b �H
hencex2 b �H

By symmetry;we can use the sameargument
to show that for some y 2 b �H; y 2 a �H

y= b �h for someh2H
b−1 � a2H for someh12H
b= a �h1−1

y= b �h= a �h1−1 �h h1
−1 � h2H

a �h1−1 �h2 a �H
hence y 2 a �H

16



Since both are subsets of each other, then a �H = b �H.

3. Let a �H; b �H be two left cosets. Then:

Either a �H = b �H or a �H \ b �H =?. Whenever we have two left cosets, either they are
the same or they do not have ANY elements in common. We observed this by the examples
we saw before.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 16th, 2020

Recall the concept of left cosets.

H <D (H is a subgroup ofD); a2D

1. a �H = fa �h jh2H g

2. If a2/H, then a �H is never a subgroup of D, and it is never a group either.

3. If a; b2D, a �H = b �H iff b−1 � a2H

Result:

a; b2 (D; �) [H <D]

Then either:

1. a �H = b �H; or

2. a �H \ b �H =?

Two left cosets of a subgroup are either a set or they have absolutely nothing in common (their
intersection is empty)

Proof: Let a; b2D. Assume that a �H =/ b �H. We will then show that a �H \ b �H =?.

We proceed by contradiction:
x2 a �H \ b �H

ie:The intersection isNOTempty
x is in both a �H and b �H

x= a �h1 for someh12H
x= b �h2 for someh22H

=)a �h1= b �h2
=)b−1 � a �h1= b−1 � b �h2=h2

b−1 � a=h2 �h1−1

h2 �h1−12H
b−1 � a2H

The previous result showed us that a �H = b �H iff b−1 � a 2H. Therefore we can conclude that
a �H = b �H. We assumed that these two are not equal. If we assumed that the intersection is not
empty, then we have a contradiction. Therefore we have completed the proof.

17



Result: Assume H <D; a2D.

ja �H j= jH j

In other words, the cardinality of the left coset of H is the same as the cardinality of the set H
itself. ie. if jH j=n<1; then ja �H j=n 8a2D

How do we show that the cardinality of two sets are equal?

Proof:

f :H! a �H

We need to show that this function is both one-to-one and onto, i.e. this function is bijective. H
is our domain and a �H is our co-domain.

f(h)= a �h
Let y 2 a �H y is in the co-domain

Then y= a �h1 For someh12H
Hence f(h1)=a �h1= y

Therefore f is onto (Surjective)

Now; to show injectivity:
Assume f(h1)= f(h2)

Show thath1=h2

)a �h1=a �h2 a2D; so a−1 exists
a−1 � a �h1=a−1 � a �h2

=)h1=h2

Therefore f is 1-1 (Injective)

Since we have shown that f is bijective, we conclude that the cardinality of H= cardinalityof a �H.

jH j= ja �H j

The method for this proof is by taking a function from H to a �H and showing that it is bijective.
If our function is bijective, then the cardinality of the two sets are equal to one another.

Lagrange's Theorem:

(D; �) is a group st jD j= n <1. This is a group that is finite. Let H <D, and jH j=m. H is
therefore, also finite. Then we can conclude the following:

mjn (m is a factorn)

The converse:

Assume jD j=n<1 and mjn. We may or may not have a subgroup with m elements. Lagrange's
theorem does not imply that every factor of nmust have a subgroup with that factor's cardinality.

Example: If jD j=12=n, then we may or may not have a subgroup of D with 4;6;2 etc. elements.
But if we definitely have a subgroup with m elements, then m should be a factor of n.

But when is the converse of Largrange true? When (D; �) is an Abelian group. The proof of this
will rely on furhter mathematics, but we can use this result anyway. In other words, we can say
that if D is Abelian and jD j=n, we definitely have a group with m elementswheremjn:
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D is Abelian. jD j=n<1, mjn=)9 at least one subgroup H ofD such that jH j=m.

Proof of Lagrange's Theorem:

Let H = e �H; a2 �H; a3 �H; .... ak �H be all distinct left cosets of H. Since they are all distinct,
this means that their intersections are empty, no elements in common. The left cosets of H are
also finite because we know that jD j=n, and thus D is a finite set.

D=H [ a2 �H [ a2 �H [ � � � [ ak �H

jD j=n= jH j+ ja2 �H j+ � � �+ jak �H j. Each of our jai �H j=m

Therefore, n= km, and thus m is a factor of n. This is the end of our proof.

Result: (D; �) is a group and jD j=n<1. Let a2D, and jaj=m.

Then: mjn. How do we show that this is true?

Proof: Let H =a; a2; a3; .... ; am= e. By class-result, we know that H <D and jH j=m. Hence, by
Lagrange's theorem, we conclude that mjn:

Let jD j= 14. Assume a2D, a2=/ e, a7=/ e, then jaj= 14.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 21st, 2020

Quotient Groups:

Let (D; �) be a group and H <D. H is a subgroup of D. We say H CD. This means that H is a
normal subgroup of D. This is iff 8a2D, a �H =H �a. This means that every left coset is a right
coset in common language.

This statement means 8h 2D; 9w 2H s.t. a � h=w � a. h does not necessarily have to equal w.
Similarly, it does not means that a �h=h � a (although this is true if our group was Abelian).

Furthermore, if (D; �) is Abelian, then every subgroup of (D; �) is a normal subgroup.

H CD() a �H =H � a 8a2D

H CD() a �H � a−1=H 8a2D

Result: Assume (D; �) is a group and H CD. Then:

(D/H; �) (Quotient group); orDmodH; factor group

D/H = fa �H j a2Dg
D/H consists of all left cosets ofH

x2D/H;meaning x= a �H for some a2D

Define � onD/H st8x; y 2D/H;

x� y=(a � b) �H;wherex= a �H and y= b �H
For some a; b2D
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Weneed to show that � is well defined on D/H.

Assume a �H = c �H =x 2D/H
b �H = d �H = y 2D/H
x � y= a � b �H
x � y= c � d �H

Weneed to show that a � b �H = c � d �H
Thismeans that �does not rely
on how x or y are represented

Byprevious result regarding left cosets;
a � b �H = c � d �H() (c � d)−1 � (a � b)2H

Note that (c � d)−1= d−1 � c−1

Show that (c � d)−1 � (a � b)2H
d−1 � c−1 � a � b2H

c−1 � a2H (Since a �H = c �H) c−1 � a2H)
d−1 �h � b For someh2H

SinceH is a normal subgroup ofD
Then b �H =H � b

Hence h � b= b �h1 for someh12H
d−1 �h � b= d−1 � b �h1

d−1 � b2H (Since b �H = d �H) d−1 � b2H)
d−1 � b �h1=h2 �h1

h2 �h12H SinceH <D

Thus � is well-defined.

Result: (D; �) is a group and H CD. Then (D/H; �) is a group with the identity e0= e �H =H.
e is the identity ofD in this case, and e0 is the identity of D/H.

Proof:

(Closure)

x; y 2D/H;x= a �H; y= b �H for some a; b2D
x � y= a � b �H

Since (D; �) is a group; a � b2D
Trivially; (a � b) �H is also

another left coset ofH
Since the � of two left cosets ofH
result in another left coset ofH

Weconclude thatD/H is closed under �
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(Identity)

Letx2D/H;x= a �H For some a2D
x � e= a �H � e �H e is the identity ofD

a � e �H = a �H
e �x=x

Therefore, H is the identity.

(Inverse)

x2D/H; show thatx−12D/H
x=a �H for some a2D

x−1=a−1 �H
x �x−1= a �H � a−1 �H

(a � a−1) �H
=e �H =H e is the identity ofD

andH is the identity ofD/H

(Associative)

This is clear since (D; �) is associative.
We are therefore done and have proven that (D/H; �) is indeed a group.

Let us take an example: (Z; +). We know that 5Z C Z. Since Z is Abelian under addition;
then 5Z is clearly a subgroup and further a normal subgroup.

Z
5Z

= f5Z; 1+5Z; 2+5Z; 3+5Z; 4+5Zg

This group has 5 elements.

Let us take two left cosets of Z. Let's take 4+5Z and 2+5Z.

(4+ 5Z) � (2+ 5Z)= (6+5Z)= 1+5Z

The � that we defined on our structure is simply addition mod n. Actually, studying quotient
groups is the reason why we came up with the idea of 5Z, and all of modulo mathematics. The
correct name of 5Z is actually Z

5Z
.

Result: (D; �) is a finite group and jD j=n<1. Further, H <D.

jD/H j is a factor ofn

D/H is a set of all distinct left cosets of H. This is a group if H is normal. How many distinct
left cosets will we have? It has to be a factor of n, or the order of the group D.

Proof: Assume H; a2 �H; .... ; ak �H are all distinct left cosets of H, and jH j=m.

jD/H j= k;we know that jH j= jai �H j 8n2 26 i6 k

jD j= jH j+ ja2 �H j+ � � �+ jak �H j
=m+m+ � � �+m

n= km

k jn
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Or in other words, k is a factor of n.

Since jD j=n; jH j=m, n=mk and jD/H j= k, we conclude that:

jD/H j= jD jjH j =
n
m
= k

Example:

jD j= 30

H <D; jH j=5

How many left cosets should H have by this result? We should have exactly 30
5
= 6 left cosets.

This means that jD/H j=6, or in other words the cardinality of the set D/H is 6 (comprised of
6 elements). This does not say that D/H is a group though, since that would only be the case if
H is a normal subgroup.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 23rd, 2020

Direct Sum (Product):

Definition: (D; �), and (F ; �) (Not the same binary operation). The direct sum or product is:

H =D�F = f(d; f) j d2D; f 2F g

H is the set of all ordered pairs (d; f) where d2D and f 2F .

Result: (D; �)and (F ;�) are groups (given). Then (H=D�F ;�) is a group with exactly jD j�jF j
elements. i.e. This group has as many elements as the product of the elements in D andF , where:

(d1; f1)� (d2; f2)= (d1 � d2; f1 � f2)

8(d1; f1); (d2; f2)2H. How do we prove that the new structure is a group?

Proof:

(Closure) This is clear since D;F are both closed under � and �. If we look at the definition, we
can see that the structure is a group since we never get an element outside of D;F .

(Identity) eH=(eD; eF). Why?

(d; f)� (eD; eF)= (d � eD; f � eF)= (d; f)

(Inverse) (d; f)−1=(d−1; f−1). Why?

(d; f)� (d−1; f−1)= (d � d−1; f � f−1)= (eD; eF)
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(Associative) Since both � and � are associative, then we can clearly see that � will also be
associative. In other words, (D; �) and (F ; �) both satisfy the associative property.

Question: Give me an example of a non-Abelian group with 60 elements.

Solution: If we let S3 be the symmetric group of an equilateral triangle, we know that this group
is definitely non-Abelian (from HW1).

H =(Z10;+)� (S3; �)

Both (Z10;+) and (S3; �) are groups, and (Z10;+)has 10 elements and (S3; �)has 6 elements:

Therefore:

jH j= 10� 6= 60 elements

In S3, we have at least two elements, called s1 and s2 such that s1 � s2=/ s2 � s1. Now we can see the
following in our new structure to determine whether H is Abelian or not.

(1; s1)� (2; s2)= (3; s1 � s2)

but:

(2; s2)� (1; s1)= (3; s2 � s1)

But we know that s1 � s2=/ s2 � s1, so these two elements are not the same.

ie (1; s1)� (2; s2)=/ (2; s2)� (1; s1)

Therefore, clearly, we can see that (H;�) is non-Abelian. Another example would be the following:

H =(Z2;+)�(S3; �)

Then: jH j= 12.

Result: H =(D; �)� (F ; �). Then, 8(d; f)2H, what would be the order?

j(d; f)j= lcm (jdj; jf j)

Proof:

Assume jdj=m; jf j=n

j(d; f)j= k

=)(d; f)k= eH=(eD; eF)
=(dk; fk)= (eD; eF)
=dk= eD; fk= eF

mjk andnjk

Since mjk and njk and k is the smallest positive integer s.t. (d; f)k= eH, we conclude that:

k= lcm (m;n)
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Example: H =(Z4;+)� (Z12;+). Find j(2; 5)j.

=lcm (j2j; j5j)
j2j= 4

gcd (2; 4)
= 2

j5j= 12
gcd (5; 12)

= 12

=lcm (2; 12)= 12

Therefore
j(2; 5)j= 12

Recall that if we have:
jaj=n

fa; a2; a3:::: ; an= eg
subgroup ofDwithn elements;

jaj=n=) subgroupwithn elements
but(= is not always true

Take H=(Z2;+)� (Z2;+). H is a group with 4 elements. Does H have an element of order 4? No.

In fact, j(d; f)j=2 when (d; f)=/ eH.

Result: If we have H =(D; �)� (F ; �), choose A<D;B <F . Let us take:

K=(A; �)� (B; �)

Is this a group? Definitely. In fact, we can further see that K <H.

Question: H =(D; �)� (F ; �). Let L<H. Can we find a subgroup A ofD and a subgroup B of F
such that:

L=A�B

No. Not always. This means we can have a subgroup in this structure that we cannot write as a
direct sum of two different subgroups.

Example: Take H =(Z2;+)� (Z4;+). What is j(1; 1)j?

j(1; 1)j= lcm (2; 4)= 4

We have an element of order 4. Can we construct a subgroup with 4 elements? Yes!

f(1; 1); (1; 1)2; (1; 1)3; (1; 1)4= eg

=f(1; 1); (0; 2); (1; 3); (0; 0)g

This is a subgroup with 4 elements. However, this set =/A�B, where A<Z2 andB<Z4.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 26th, 2020

Common Knowlege in Number Theory :
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Question: If we are given a set D= faj16a<n and gcd (a; n)=1g, then what is the cardinality of
this set? If the gcd of two numbers is 1, then they are said to be relatively prime.

jD j= '(n)

How do we calculate '(n)?

n> 1
n= p1

n1 � p2n2 � � � � � pk
nk

This is the prime factorization of n;
and p1; p2; ::::; pk are distinct

'(n)= (p1− 1)p1n1−1 � (p2− 1)p2n2−1 :::: � (pk− 1)pk
�k−1

Let us take an example. Choose n= 74.

n= 74=2 � 37
=21 � 371

'(n)= (2− 1)20 � (37− 1)370

=36

What is the meaning of this number? This is the cardinality of D where

D= faj16a<n and gcd (a; 74=1g

There are exactly 36 numbers between 1 and 74 where each one of them is relatively prime to 74.
We can also take another example.

n= 32 � 53 � 74

n=25 � 53 � 74 Prime factorization
'(n)= 24 � 4 � 52 � 6 � 73

'(n)= jD jwhereD= faj16 a<n; and gcd (a; n)= 1g

Question: Let n>1. Choose k jn. It is possible for k to be 1. k=/ n. k can be 1 or any other factors
of n exceptn.

M = faj16a<n and gcd (a; n)= kg

jM j= '
( n
k

�
Let us take an example: n= 32 � 35=25 � 35, and k=6. k jn.

M = faj16 a<n and gcd (a; n)=6g
jM j= '

�
n
k

�
= '

�
n
6

�
n
6
=24 � 34

'
�
n
6

�
=23 � 2 � 33

What is '(primenumber)? n−1. This means that if we have a number, n, that is a prime number,
then the prime factorization of that number, '(n)=n− 1.

Fermat's Little Theorem:

Assume gcd (a; p)=1, where a2Z+ and p is a prime number. Then:

p jap−1− 1
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Another way of saying this is that (ap−1)mod p=1. If we take a number, a, that is relatively prime
to p, and we divide by p, the remainder is going to be 1. Why is it little? Because we will get the
bigger one later.

Notice that p− 1= '(p)

Euler's Result :

n2Z+ and a2Z+ st gcd (a; n)= 1. Then we can see that:

a'(n)(modn)=1

This is the same as Fermat's little theorem, but it is more general.

Result:

(Zn�;�) is a group iff n is prime

Proof:

Assume (Zn� ;�) is a group:Weshow thatn is prime
=)

Weproceed by contradiction:Assume thatn=mk; 1<m; k <n

Sincem and k 2Zn
�;m k=n=02Zn

�

This is our contradiction; since 02/ Zn�

Thereforen has to be prime

Assumen is prime; show that (Zn�;�) is a group
(=

Associative property is clear:

e=1; thereforewe have the identity e2Zn
�

Closure:
Let a; b2Zn

� :Show that a� b2Zn
�

Proceed by contradiction to see that
a� b=02Zn

� =) a=0 or b=0
This is our contradiction since a; b2Zn

�

Inverse:
Let a2Zn

� ; since gcd (a; n)=1;
ByFermat0s Little Theorem;

an−1(modn)= 1
a� an−2=12Zn

a−1= an−22Zn
�

Sowe have shown that if n is prime;Zn�

(Z13
� ;�) is a group; as an example
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Result:

Define n > 1. Then U(n) = faj16 a < n and gcd (a; n) = 1g. This is clearly a subset of Zn
�. ie

U(n)�Zn
�. If our n is a prime number, then U(n)=Zn

� .

Result:

(U(n);�) is anAbelian group

Let us take an example, say (Z15
� ;�). This is clearly not a group since we know that 15 is not

prime. However, can we find a group from it:

U(15)= f1; 2; 4; 6; 8; 11; 13; 14g

jU(n)j= '(n)

We know that '(15)= 8, which matches the number of terms we found in U(15). Therefore:

(U(15);�) is a group

How do we prove this result?

Closure:
a; b2U(n)

since gcd (a; n)=1 and gcd (b; n)= 1
gcd (a� b; n)=1; and hence

a� b(modn)2U(n)

Identity:
e=12U(n)

Associativity is also clear

Inverse:
a2U(n)

Since gcd (a; n)= 1;byEuler0s theorem:
a'(n)(modn)= 1

Hence a� a'(n)−1=12U(n)
The inverse of a= a'(n)−1

Let us take (U(30);�), this is a group, but for the same number, (Z30
� ;�) is not a group. Further-

more, we can see that:

jU(30)j= '(30)

30=2 � 3 � 5
'(30)= 1 � 2 � 4=8

ThereforeU(30) has 8 elements
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Question: Imagine (D; �) is a group. We select a2D and jaj=20. 20 is the smallest positive integer
where if we do � on a 20 times, we get the identity.

H = fa; a2; a3; :::: ; a20= eg<D

How many elements of order 20 does H have?

Solution: jakj= 20
gcd (k; 20) = 20. This means that gcd (k; 20) = 1, and 16 k < 20. This leads us to

the conclusion: H has exactly '(20) elements, each of which have order 20. Furthermore, D has
AT LEAST '(20) elements of order 20.

How many elements in H of order 5 (Since 5 is a factor of 20)?

jakj= 20
gcd (k; 20)

= 5

=)gcd (k; 20)= 4; 16 k < 20

From the beginning of the lecture, we know that this value is '
( 20
4

�
= '(5)= 4. Now, how many

elements in H have order 10?

jakj= 20
gcd (k; 20)

= 10

gcd (k; 20)=2; 16 k < 20

'

�
20
2

�
= '(10) (Fromearlier result)

Definition of a Finite Cyclic Group:

(D; �) is a finite group with n elements (n<1). We say thatD is a cyclic group iff D has an elmenet
a where jaj=n. i.e. D= fa; a2; a3; .... ; an= eg. If we have an element of order n, we can generate
the whole group fom this one element. This means that each element in D is some power of a.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 28th, 2020

Finite Cyclic Groups:

Def: We have (D; �), which is a finite group, and jD j=n<1. If 9a2D st jaj=n, then we say that
D is a cyclic group. In notation, we say that D=<a> . The order of a is n and we can write D as:

D= fa; a2; a3; :::: an= eg

Do we have any examples of groups that are cyclic?

(Zn;+) is cyclic for alln> 2

This is because of the fact that:

j1j=n in (Zn;+)
(Zn;+) is generated by 1; ie (Zn;+)=<1>

=f1; 12; 13; ::::1ng
=f1; 2; 3; :::: ; 0= eg
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Question: Find all generators of Zn. What do we mean by generators? D=<a> , D is cyclic and
is generated by a. Therefore:

D= fa; a2; a3; ::::ang

We know that 1 is a generator of (Zn;+). Is that the only one? How many can we find other than
1? What is the process of thinking here? Another way of looking at this is how many elements in
Zn are of order n? To know all the generators, we need to know all the elements of order n.

(Zn;+)=<1>

Assume (Zn;+)=<a>

=<1k>;wherea=1k

Hence jaj=n

jaj= j1kj= j1j
gcd (k; n)

=n

In otherwords; gcd (k; n)=1
ie jaj=n iff gcd (k; n)=1

Result:

(Zn;+)has exactly '(n) generators

This means that it has exactly '(n) elements, each of which is of order n. To continue with this,
let us take an example:

Find all generators of (Z20;+)

Obviously; one of them is 1
3=13 and gcd (3; 20)= 1

gcd (7; 20)= 1
etc ::::

1; 3; 7; 9; 11; 13; 17; 19

Therfore; (Zn;+)=
<1>=<3>=� � �=<19>

Howmanygenerators dowe need to have?
'(20) elements; and '(20)= 8

Theorem about Cyclic Groups:

Assume that (D; �) is a cyclic group, and jD j=n<1.

1. Let mjn; thenD has exactly '(m) elements, each is of order m
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Proof:

Since (D; �) is cyclic;9a2D
st jaj=n; ieD=<a>

=fa; a2; a3; ::: ; ang

ThereforeD=<a>=fa; a2; a3; :::: ; ang

Letmjn; and let b2D
Hence b= ak for some 16 k <n; and b=/ e

jbj= jaj
gcd (k; n)

=m

jbj= n

gcd (k; n)
=m

Therefore: gcd(k; n)= n
m

and 16 k <n

=)we know thatwe have exactly '

 
n
n

m

!
= '(m)

elements;where gcd (k; n)= n
m

This means that D has exactly '(m) elements, each is of order m.

Result from number theory:

n=
X
djn

'(d)

As an example, we can take n=15. 15 = '(1)+'(3)+'(5)+'(15), and '(1)=1bydefault

Proof:

Consider the cyclic group (Zn;+)
Let djn

Weknow that (Zn;+) has exactly '(d) elements
each of order d

Assume that 1; d1; d2; ::: ; dk=n

are all distinct factors of n
'(1)+ '(d1)+ '(d2)+ � � �+ '(n)=n

For each divisor d of n;wehave '(d) elements
Therefore;

X
djn

'(d)=n

As an example, let us take n=300

300=
X
dj300

'(d)
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2. (D, � ) is a cyclic group and jD j=n. If mjn, then there exists a unique subgroup of D with
exactly m elements.

For example, if we have a group (D; �) and jD j= 30, then 9 exactly one unique subgroup
with 6 elements, since 6j30. The same follows for other factors of 30.

Proof:

We use the fact that
every subgroup of a cyclic group is cyclic: (Wewill prove this later)

Let b2D; jbj=m

Hence<b>=fb; b2; b3; ::::; bm= eg
is a subgroup ofDwithm elements:Weproved this in (1)

Weshow that<b> is unique:
AssumeD has another subgroup;

H ; st jH j=m

Weshow thatH =<b> :

Using the fact thatH is cyclic; ieH =<c>; jcj=m

<b> has exactly '(m) elements of orderm

Weproved thatD has exactly '(m) elements of orderm
These two statements give us the conclusion:

Every element inD of ordermmust 00live00 inside<b>

H =<c> and jcj=m

c2<b>
therefore: <c>=<b>

Note that every cyclic group is Abelian. If our group is not Abelian, then it will never be
cyclic.

Proof:

SinceD is cyclic;
D=<a>; x; y 2D

x=ak; y= am

x � y= ak � am=ak+m

ak+m= am+k; thereforex � y= y �x

Therefore; D is anAbelian group

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 5th, 2020

Cyclic Groups:

(D; �) is finite cyclic and we know that jD j=n<1.

1. D is anAbelian group
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2. If mjn, then D has a unique subgroup with m elements

3. If b2D and jbj=n, then D= fb; b2; ... ; bn= eg

4. D has '(n) elements each of ordern

Def: We say that a group, (D; �) is an infinite cyclic group, ie D =<a >; a 2D iff 8b 2D; 9n 2
Z st b= an.

Result: (D; �) is cyclic, where it could be finite or infinite cyclic. Let h<D. Then H CD and H
is cyclic.

Proof:

Since D is Abelian, it is clear that H CD (H is a normal subgroup of D). We now also need to
prove that H is cyclic.

SinceD is cyclic;
D=<a> for some a2D

Letm=min fijai2H; i> 1g
ClaimH is generated by am; ieH =<am>

Leth2H:Weshow thath=(am) k for some k 2Z

SinceD=<a> andh2D;
h= aw for somew 2Z

Weshow thatmjw:Weare done after that
Hencew=mk+ r;where 06 r <m

The next step is to show that r=0
h2H;h=aw= amk+r= amk � ar

amk2H; it has an inverse
a−mk � aw=a−mk � amk � ar

=ar

a−mk � aw2H; and therefore ar2H; 06 r <m

Sincem is the smallest positive integer st a2H;

we conclude that r=0: (a0= e2H)
=)hmk=(am)k

=)H =<am>

Result: Assume (D; �) is an infinite cyclic group. D has exactly 2 generators. Namely, if D =
<a> andD=<b> , then b=a−1. All other elements of D will not generate D.

D is infinite cyclic=)9!a2D stD=<a>=<a−1>

Why is this true for the infinite cyclic group?

Proof:
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Assume (D; �)=<a> . We show that D=<a−1>

Let b2D;hence b= an for somen2Z

an=(a−1)−n;−n2Z

=)b= an2<a−1>
=)<a>=<a−1>=D

Now, we assume D=<b>;where b=/ a and b=/ a−1. We will reach a contradiction, where we can
see that b must equal a.

SinceD is infinite cyclic andD=<a>;

we conclude that jaj=1

Since a2D andD=<b>;9m2Z st a= bm

Also; since b2D andD=<a>;9n2Z st b=an

a= bm and b= an=) a=anm

a � a−1=anm � a−1

e= anm−1

=)nm− 1must be 0; otherwise jaj<1; contradiction

nm− 1=0; n;m2Z

n=1;m=1 orn=−1;m=−1

if n=m=1; b= a;which is again; a contradiction:
if n=m=−1; b−1= a−1=) b=a;which is a contradiction

Hence D has exactly 2 generators, and it cannot have any other generators other than one element
and its inverse, as proven above through contradiction.

Example of an Infinite Cyclic Group:

(Z;+)=<1>=<1−1>=<−1>

This clearly shows us that 1 and−1 are the only two generators ofZ.

Let n2Z;9m2Z stn=1m=) 1n=m; and thusm=n. Similarly, n=(−1)n.

Example of an Infinite Abelian group that is NOT cyclic:

(Q;+)! is anAbelian group that is not cyclic

The same follows with (R;+) and (C;+). We could even look to Q1 in HW2, which is the power
set of a set D. This is a finite Abelian group that is not cyclic.

How do we convince ourselves of this?

(Q;+)=<
a
b
>

gcd (a; b)= 1
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We can always have more rational numbers that are not generated by our �generator.�

LetD=Z4�Z6

D= f(a; b)ja2Z4 and b2Z6g
(a1; b1)� (a2; b2)= (a1+4 a2; b1+6 b2)

j(a; b)j= lcm [jaj; jbj]

D is not cyclic;but it is Abelian
(Z4;+) is cyclic because (Zn;+) is cyclic;

(Zn;+)=<1>

jD j=6 � 4= 24
D has no elements of order 24

because lcm (4; 6)= 12

<(1; 1)>2Z4�Z6

j(1; 1)j= lcm (j1j; j1j)
=lcm (4; 6)= 12

We will prove in the next homework that Zn�Zm is cyclic iff gcd (n;m)= 1.

D=H �K; jD j= jH j � jK j

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 7th, 2020

Definition of a Symmetric Group (Permutation group Sn):

Let S be a finite set with n elements. This means that S=f1;2;3 ... ;ng. Let f :S!S be a function
such that f is bijective (both 1-1 and onto). Then:

Sn=The set of all bijective functions fromS toS

We can see that (Sn; �) is a group. In fact, this is a non-Abelian group. How can we show this?
Consider the following:

Closure: If we do the composition of two bijective functions, we will very obviously end up with
another bijective function. This means that we have closure in this set.

Identity: Let e= identitymap j e(i)= i 8i2S. This means that e:S!S.

Invertibility: If a function is bijective, meaning that it is both one to one and onto, that means
that it is invertible. We know this result from Calculus I.

Associativity: This is clear and obvious.

w 2Snmeans thatw:S!S;w is a bijective function and jS j=n

How do we write elements in Sn?

Let a2S5. Then:

a=
�
1 2 3 4 5
4 3 1 5 2

�
The top line is the domain of the function, and the bottom line is the co-domain. In other words,
we can see that a(1) = 4; a(2) = 3; a(3) = 1; a(4) = 5; a(5) = 2. This is a bijective function, as we
mentioned before.

34



What is jSnj?�
1 2 3 :::: n

n possibilities n− 1possibilities n− 2 possibilities 1 possibility

�

jSnj=n!

The symmetric / permutation group has exacty n! elements. For example, jS4j=4!=24; jS3j=3!=6,
and so on.

Let a= ( 1 4 5 )2S5. This is a bijective function where a is a 3-cycle.

f :
�
1 2 3 4 5
4 2 3 5 1

�
The elements cycle through to what they have been assigned. 1 goes to 4, 4 goes to 5 and 5 goes
to 1, while the elements that were not mentioned in a simply map to themselves. This is obviously
a bijective function. This is a short-hand notation for the functions in the symmetric groups. Let
us take another example:

a=( 2 5 3 4 )2S6; then f :
�
1 2 3 4 5 6
1 5 4 2 3 6

�
:This is 4 cycles

How do we find the order of a cycle? Consider �= ( 2 3 7 )2S7. This is again, 3-cycles. Note the
following:

j�j=3

Now take the following:

� ��=( 2 3 7 ) � ( 2 3 7 )= ( 2 7 3 )

� �� ��=( 2 7 3 ) � ( 2 3 7 )= ( 2 )( 3 )( 7 )

This is the identity map, because every element maps to itself.

How does this work? We go from RIGHT TO LEFT. For example, in ( 2 3 7 ) � ( 2 3 7 ), 7 maps
to 2 and 2 maps to 3, therefore 7 maps to 3. 3 maps to 7 and 7 maps to 2, so 3 maps to 2. We
proceed in the same manner. Always go from right to left to see what each element maps to w.r.t.
the other cycles.

Fact: If we have an � that ism-cycle in Sn, then j�j=m. Quickly, let us take an example:

�=( 1 3 7 9 11 )2S12

Then clearly and quickly we can see that � is 5-cycle, and therefore j�j=5. This means that the
minimum number of times we need to permute � with itself to get the identity function is 5 times.
That's it. We cannot do it any less times. But what if we don't have the cycles?

Result: Let f 2Sn. Then f can be written as a composition of disjoint cycles. Let us first start
with an example:

f :
�
1 2 3 4 5 6
3 5 1 2 4 6

�
2S6; f is not a cycle
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Then we can see the following:

f =( 1 3 ) � ( 2 5 4 )

This uses the fact that the set is finite. How do we think of this as a function? Each element is
a bijective function in the set of S6. The two cycles have nothing in common. We can generalize
this to be the following:

�=( a1 a2 a3 :::: ak )

�=( b1 b2 b3 :::: bm )

We say that �; � are disjoint cycles iff ai=/ bw 816 i6 k and816w6m.

Let �= ( 1 4 7 ) and �= ( 7 3 2 ). Obviously, a and � are not disjoint because there is a repeated
element, 7. j�j=3= j� j. This is a bijective function.

Example:

f :
�
1 2 3 4 5 6 7 8
4 2 5 3 1 8 6 7

�

What can we write f as? f = ( 1 4 3 5 ) � ( 6 8 7 ). That's it. We have written the function as the
composition of two disjoint cycles.

Result: �; � are two disjoint cycles. Then we can say that � � �= � ��.

First, consider s;where s2/ � and s2/ �. Then � � �(s)= s, and � ��(s)= s. The other cases are as
follows: s2� and s2/ �, in which case we have the following: (�� �)(s)=�(�(s))=�(s). If we take
(� ��)(s);wewould get �(�(s))=�(s).

Similarly, if we have s2/ �ands2 �, then (�� �)(s)=�(�(s))= �(s)and (� ��)(s)= �(�(s))= �(s).
This case is the same as the previous, by symmtery.

Result: Let f 2 Sn:We know that f = �1 � �2 � � � � � �k of disjoint cycles (each �i is a bijective
function, but written as a cycle). Then:

jf j= lcm (j�1j; j�2j; ::: ; j�kj)

Why is this true?

Proof:

Find the smallest positive integer, m, st fm= f � f � f � � � � � f = e. This is repeated m times. We
already know that: f = �1 � �2 � � � � ��k. let mi= j�ij; for 16 i6 k andm= jf j. Each mijm. We
need to find an integer that is divisible by each of our mi, and this by definition is the lcm.

m= lcm (m1;m2; :::: ;mk)

Example:

f :
�
1 2 3 4 5 6 7 8
6 4 8 5 1 2 3 7

�
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We want to find jf j. The first thing we do is write f as a composition of disjoint cycles.

f =( 1 6 2 4 5 ) � ( 3 8 7 )

We have written f as the composition of two disjoint sets, and thus it is easy to find the order of
f . We simply note the following: jf j= lcm (ja1j; ja2j)= lcm (5; 3)= 15. We are done.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 12th, 2020

Definition of Even Permutations:

Let f 2Sn: f is called an even permutation if f = composition of an even number of 2-cycles. For
example, let us take:

( 1 2 3 )= ( 1 3 ) � ( 1 2 )

This is an even permutation, or an even function. This is true because we can take our f and write
it as two 2-cycles.

Result: f 2Sn. Assume f = composition of an even number of 2-cycles. Then if f = compositions
of 2-cycles, then the number of the 2-cycles is an even number. If we write f as the composition
of an even number of 2-cycles, when we rewrite and try to find another composition of 2-cycles,
the number of 2-cycles stays even. We can never write f as an odd number of 2-cycles, but it is
definitely not unique either.

Fact: If we have some ( a1 a2 a3 :::: am ), then we can say the following (for an m-cycle):

( a1 a2 a3 :::: am )= ( a1 am ) � ( a1 am−1 ) � ( a1 am−2 ) � � � � � ( a1 a2 )

This is a way to write an m-cycle as a composition of 2-cycles.

For example, let us take the following example:

�=( 2 3 6 8 )2S8: Is� an even permutation?

�=( 2 8 ) � ( 2 6 ) � ( 2 3 )

We have written � has the composition of 2-cycles, but the total number of 2-cycles is 3. This is
an odd number, and therefore � is not an even permutation.

Note: The identity map, e, is an even permutation conventionally.

Fact: Let � be an m-cycle. If m is odd, then � is an even permutation. Moreover, if m is even,
then � is an odd permutation.

Proof:

( m1 m2 m3 :::: mm )= ( m1 mm ) � ( m1 mm−1 ) � � � � � ( m1 m2 )

In this case, we have exactly m− 1 2-cycles, and thus if m was even, we'd have an odd number of
2-cycles, and if m was odd, we'd have an even number of 2-cycles.
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But what if our function is not written as a cycle? Consider the following example:

f :
�
1 2 3 4 5 6
4 5 1 3 2 6

�
2S6

Then we can rewrite f as the following:

f =( 1 4 3 ) � ( 2 5 )

Then we expand the 3-cycle to be the following: ( 1 4 3 )= ( 1 3 ) � ( 1 4 ). And thus, f becomes
the following:

f =( 1 3 ) � ( 1 4 ) � ( 2 5 )

This is 3 (odd number) of 2-cycles, which means that f is not an even permutation, because we
used 3 2-cycles.

Result: Let n>2. An is a subgroup of Sn, where An is the set of all even permutations of Sn. How
do we need to prove this? Since we know that Sn is a group, then we need to only show closure to
see that An is a subgroup, because An is finite.

Proof:

Let f1; f2 2An. Hence f1= composition of an even number, n1 of 2-cycles. Furthermore, f2=
composition of an even number, n2, of 2-cycles. Then:

f1 � f2= composition of (n1+n2) of 2-cycles

The addition of two even numbers is an even number, which means that f1 � f2 will stay in An.
Therefore, we know that An is closed under the binary operation �, and therefore it is a subgroup.

Result: jAnj= n!

2
. Recall that jSnj= n!, this result proves that half the permutations of Sn are

even and the other half of them are odd. How do we convince ourselves of this?

Proof:

Let jAnj=m. We want to show that:

m= n!
2

Form ( 1 2 ) �An. This is a left coset of An. Let us call it F . This left coset is not the same as An.
This is because ( 1 2 )2/ An. Claim that F = set of all odd permutations. We only need to show
that F = ( 1 2 ) �An is the set of all odd permutations of Sn.

Let f be an odd permutation
Show that f 2F
f =( 1 2 ) � k wherek 2Sn

=( 1 2 ) � ( 1 2 ) � f
( 1 2 )2= e

=e � f = f

k=( 1 2 ) � f is an even permutation
=)f =( 1 2 ) � k; k2An

=)f 2F
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This means that every odd permutation lives in F .

Sn=F [An

We know that jAnj=m= jF j, and so jSnj=m+m=2m=n!. Therefore:

m= n!
2

We have also established that An has exactly two left cosets. One is An itself, and the other is the
set of all odd permutations.

Result: Let (D; �) be a group, and H <D, meaning that H is a subgroup of D. Assume that
jDj
jH j =2. In this case, H CD. This means that H is a normal subgroup of D.

In fact, jDjjH j = [H:D], and is called the index of H inD. [H:D] = number of all distinct left cosets

of H. This is the same as the number of all distinct right cosets of H.

We need to show that if [H:D] = 2, then H CD. In street language, if a set has exactly two left
cosets, then it is a normal subgroup of D.

Proof: Since jDjjH j =2, then H has exactly two left cosets, say a �H, and it also have 2 right cosets,

say H � b. Then we know that:

D=H [ a �H 8a2DnH

We also know that:

D=H [H � a 8a2DnH

We need to show that a �H =H � b 8a; b 2D. If a 2H, then there is nothing to prove since
a �H =H � a. Now let us take a outside of H, ie a2DnH. We show that a �H =H � a.

SinceD=H [ a �H andD=H [H � b
Weconlcude that a �H =H � a

We can also show this graphically:

H � a

a �H

H

H

D

D

This implies that the two regions of a �H andH � a are the same, beacuse inside of D, H remains
the same in both graphs.
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Result: Linking this back to our previous discussion, we can conlcude that AnCSn. An is a normal
subgroup of Sn.

Proof:

jAnj=
n!
2
; jSnj=n!

[An:Sn] = 2= jAnjjSnj
=)AnCSnby our previous result

Therefore, in addition to An being a subgroup of Sn, we also know now that it is indeed a normal
subgroup.

Definition of the Center of a Group:

Let (D; �) be a group. Then the center of D, denoted by C(D) orZ(D) is given by the following:

C(D)= fa2D ja � b= b � a 8b2Dg

In street language, we can see that the center of D is the set of all elements in D that commute
with every element in D. There are some elements in the group that commute with all elements
in D, and these elements are called the center of D.

Note that if D is an Abelian group, then the center of D is simply D itself, because every element
commutes with every other element.

Take Snwithn> 3. Our claim here is that this group is non-Abelian. How do we prove this?

Proof:

( 1 2 )=� and ( 1 3 )= � 2Sn n> 3
Let us calculate� � �

� � �=( 1 2 ) � ( 1 3 )= ( 1 3 2 )
Let us calculate � ��

� ��=( 1 3 ) � ( 1 2 )= ( 1 2 3 )

Clearly these two elements are not the same and this is enough to show that Sn is non-Abelian
when we have n> 3.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 14th, 2020

Recall the definition of the center of a group. Note again that if a group is Abelian, the center of
a group is the group itself. ie.:

C(D)=D

This means that the center of the group is mostly only interesting for non-Abelian groups. Now,
we proceed with the following result:
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Result: (D; �) is a group. Assume that a � b= b � a for some a; b2D. Then we have the following
result:

a−1 � b= b � a−1

This means that if a commutes with b, then the inverse of a would also commute with b.

Proof:

We know that (a � b)−1 � (a � b)= e

b−1 � a−1 � (a � b)= e

b−1 � a−1 � (b � a)= e

(b−1 � a−1 � (b � a)) � a−1= e � a−1

=b−1 � a−1 � b � e= a−1

b � (b−1 � a−1 � b)= b � a−1

=a−1 � b= b � a−1

Therefore we have shown that:

a−1 � b= b � a−1

Result: Assume that (D; �) is a group. Then we can say that C(D) is a subgroup of D.

Proof:

Let a; b2C(D)
Wewant to show that a−1 � b2C(D)

Sincea2C(D); a−12C(D)
This is by the previous result;proven above

Leth2D
Then (a−1 �h � b)= a−1 �h � b= a−1 �h � b

=h � a−1 � b
(a−1 � b) �h=h � (a−1 � b)

This means that since h is randomly selected in D, and since it commutes with a−1 � b, then we
can conclude that:

a−1 � b2C(D)

Result+: Let (D; �) be a group. Then the center of D;C(D) is a normal subgroup of D. This is
a + because we expand upon the previous result.

Proof: We already know that C(D)<D. Let a2D. We will show that a �C(D)=C(D) � a.

Since each element inC(D)
commuteswith each element inD;

thenC(D) � a=a �C(D)
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Result: Let (D; �) be a group. If D/C(D) is a cyclic group, then we conclude that D is an Abelian
group. If the left coset of the center of D is generated by one element, then the original group has
to be Abelian.

Proof: Let x; y 2D. We want to show that x � y= y �x.

SinceD/C(D) is cyclic;weknow that:
9a2D stD/C(D)=<a �C(D)>

ieD/C(D) is generated by a left coset

Hencex �C(D)2 [a �C(D)]n n2Z

Becausex �C(D) is a left coset
and all left cosets are generated by a �C(D)

=an �C(D)
Similarly; y �C(D)= [a �C(D)]m m2Z

=am �C(D)

x= an � k1 k12C(D)
y= am � k2 k22C(D)

x � y=an � k1 � am � k2
=an � am � k1 � k2
=am � an � k2 � k1
=am � k2 � an � k1

=y �x

We established that D is an Abelian group.

Result: Let (D; �) be a group st jD j= qnwhere q is a prime: Then our result is that the cardinality
of the center of the group is greater or equal to q.

jC(D)j> q

This is going to be covered in more depth when we consider Congruancy groups, but for now, we
can simply use it in exams and homeworks without having to know the proof.

Result: Let (D; �) be a group st jD j= q2 for some prime number, q. Then our result is that D is
Abelian.

Proof: By the previous result, jC(D)j= q or q2. Why is this true? The order of the subgroup has
to be a factor of the order of D, which means that the only two possibilities for it are q and q2

since the previous result just showed us that jC(D)j> q and q is prime.

If jC(D)j= q2;

the center ofD is thewhole group
All elements commutewith each other

D is Abelian
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Now we assume the other case:

jC(D)j= q

SinceC(D)CD; D
C(D)

is a group

Hence
�������� D
C(D)

��������= jD j
jC(D)j = q

ThusD/C(D) is a groupwith q elements
Remember that q is prime

=)D/C(D) is cyclic
By a previous result introduced in this lecture;

ifD/C(D) is cyclic; thenD is Abelian:

Therefore, in either case, if we have the cardinality of a group being equal to a prime squared, then
our group is Abelian no matter what.

.........................................................................................................................................................
Result for those that are interested:

We knowS3=D3

Consider the symmetry group on a 4− gon
D4 is a subgroup of S4

jS4j=4!= 24; and jD4j=8

In general, we can have the following:

LetDnbe the symmetric group on ann− gon
Then jDnj=2n

Note that for an n-gon, the shape is divided so that each angle is divided equally from the center
of the shape. This means that each angle is equal to: 360

n
degrees.

Let us consider D6. This means we are acting on a 6-gon. For the rotations, we have 360
n
;
360
2n
; ....

and for the reflections, we have to draw them and see. However, overall we can see that we have a
total of n rotations and n reflections. In our case, D6has a total of 12 symmetries. Furthermore,
we will never get out of this set. This is because the composition of as many reflections or rotations
is still going to result in a symmetry inside the set Dn

.........................................................................................................................................................
Definition of Group Homomorphism:

Let us consider the following function:

f : (D; �)! (W ; �);where (D; �) and (W ; �) are groups

We say that f is a group homomorphism iff f(a � b)= f(a) � f(b) 8a; b2D.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 19th, 2020

Group Homomorphism:

Def:

f : (D; �)! (F ; �)

is called a group-homomorphism iff f(d1 � d2) = f(d1) � f(d2) 8d1; d22D. This is simply recalling
from the last lecture.

43



Result:

f : (D; �)! (F ; �) is a group-homomorphism. Then we have the following results:

1. f(eD)= eF . The identity in D should map with the identity in F

2. f(a−1)= [f(a)]−1 8a2D

3. f(an)= [f(a)]n 8n2Z

f(a � a � a � a � � � � � a)= f(a) � f(a) � f(a) � � � � � f(a)

4. Assume jaj=m. Then we can say that jf(a)j jm (the order of f(a) divides the order of a).
Furthermore, jajdoes not need to equal jf(a)j.

Proof(s):

1.

We show that f(eD)= eF

f(eD)= f(eD � eD)= f(eD) � f(eD)
This is since f is group homomorphism

f(eD)= f(eD) � f(eD)
Since f is a group:

f−1(eD) � [f(eD)= f(eD) � f(eD)]
=)f−1(eD) � f(eD)= f−1(eD) � f(eD) � f(eD)

Note that f−1(eD) � f(eD)= eF

Therefore:
eF = eF � f(eD)

=f(eD)

2.

We show that f(a−1)= [f(a)]−1

eF = f(eD)= f(a � a−1)= f(a) � f(a−1)
=)[f(a)]−1= f(a−1)

3.

We show that f(an)= [f(a)]n 8n2Z

Assumen2Z+

f(an)= f(a � a � a � � � � � a)
=f(a) � f(a) � f(a) � � � � � f(a)

=[f(a)]n

Nowassumen2Z−

f(an)= f((a−1)−n)= [[f(a)]−1]−n

=f(a−1) � f(a−1) � f(a−1) �� � � � f(a−1) −n times
=[f(a)]n
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4.

Assume jaj=m<1 and jf(a)j=n

Weshow thatnjm
jaj=m=) am= eD

eF = f(eD)= f(am)= [f(a)]m

[f(a)]m= e

=)njm
n is a factor ofm

Def:

f : (D; �)! (F ; �)

Assume that f is a group homomorphism. The Kernel of f , denoted by ker(f) is given by the
following:

ker(f)= fd2D j f(d)= eF g

ker(f) is the set of all elements in D that map to the identity of F , eF .

Result:

Given that f : (D; �)! (F ; �) is a group homomorphism, then:

ker(f)CD

This means that the kernel of f is a normal subgroup of D. If D is Abelian, this is trivial.

Proof:

Firstwe show that ker(f)<D

Let a; b2 ker(f):Weshow a−1 � b2 ker(f)
In otherwords:
f(a−1 � b)= eF

This is howwe showan element is in ker(f)

Since a; b2 ker(f);
f(a)= f(b)= eF

Weknow that f(a−1)= [f(a)]−1

Since f(a)= eF ; f(a−1)= eF
−1= eF

Hence f(a−1 � b)= f(a−1) � f(b)
=eF � eF = eF

=)a−1 � b2 ker(f)
Therefore ker(f)<D

Nowwe show that ker(f)CD
Show8b2D; b � ker(f)= ker(f) � b
()8b2D; b � ker(f) � b−1= ker(f)
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Letx2 ker(f)
Show that b � y � b−1=x for some y 2 ker(f)

Let y= b−1 �x � b
f(y)= f(b−1 �x � b)= f(b−1) � f(x) � f(b)

=f(b−1) � eF � f(b)
=f(b−1) � f(b)= eF

Check if x= b � y � b−1

x= b � b−1 �x � b � b−1

=x

=)ker(f)� b � ker(f) � b−1

Choosew2 b � ker(f) � b−1

Show thatw2 ker(f)

Sincew 2 b � ker(f) � b−1;9d2 ker(f)
stw= b � d � b−1

Weshow that f(w)= eF

f(w)= f(b � d � b−1)= f(b) � f(d) � f(b−1)
=f(b) � eF � f(b−1)

=eF

Thereforew2 ker(f)

Recall that for a function, f : (D; �)! (F ; �), our (D; �) is the domain, and the (F ; �) is the co-
domain. This means that the range is a subset of F . range�F , and so range(f)<F .

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 21st, 2020

Result: Consider the following group homomorphism:

f : (D; �)! (W ; �)

Then we can say that range(f)<W . The range of f is a subgroup of W .

Proof:

Let a; b2 range(f)
Show a−1 � b2 range(f)

Since a; b2 range(f); 9x; y 2D st f(x)= a and f(y)= b

Hence f(x−1)= [f(x)]−1= a−1

Thus f(x−1 � y)= f(x−1) � f(y)=a−1 � b
=)a−1 � b2 range(f)

Isomorphism:

f : (D; �)! (W ; �)

46



is a group homomorphism. We say that f is a group isomorphism iff f is a bijective function. This
means that f is both one-to-one and onto.

If two groups form an isomorphism, this means that they share the same structure. If prof. Badawi
comes into class next week and his name is Mike, the only thing that has changed is his name.
Everything else is the same - he still teaches us Abstract Algebra, etc.

If D and W are isomorphic, if D has 1,000,000 elements, then W has 1,000,000 elements, and so
on. However, the names of the elements are different. It is their structure that stays the same.

Result [Big]:

Assume we have f : (D; �)! (W ; �) is a group homomorphism. Then:

D/ker(f)� range(f)

� means that they are isomorphic to one another. We are saying that the group D/ker(f) is
isomorphic to range(f).

Proof:

We need to construct a map, K; where K:D/ker(f)! range(f) st K is a group homomorphism,
is one-to-one and onto. If we can construct such a mapping, then we are done.

f : (D; �)! (W ; �)
K: (D/ker(f); �0)! range(f)

K(a � ker(f))= f(a) 8a � ker(f)2D/ker(f); a2D
f(a)2W ; and f(a)2 range(f)

Consider the following:
K(a � ker (f) �0 b � ker(f))

=K(a � b � ker(f))= f(a � b)
=f(a) � f(b)=K(a � ker(f)) �K(b � ker(f))

=)K is a group homomorphism

We show thatK is 1− 1 and onto

Onto:
Let y 2 range(f):Hence 9x2D st

f(x)= y

ThusK(x � ker(f))= f(x)= y

Thereforewe have shown that
for all elements in the range;
wehave some element inD

thatmaps to it

1− 1:
AssumeK(a � ker(f))=K(b � ker(f))

Show that a � ker(f)= b � ker(f)
Wehave:

K(a � ker(f))=K(b � ker(f))
K(a � ker(f))= f(a)
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K(b � ker(f))= f(b)
ie f(a)= f(b)

Take this right operation:
f(a) � f(b−1)= f(b) � f(b−1)

f(a) � [f(b)]−1= eW 2 range(f)
f(a) � f(b−1)= eW

f(a � b−1)= eW

since f is group homomorphism
=)a � b−12 ker(f)

=)a � ker(f)= b � ker(f)

Therefore; K is 1− 1

Question: Assume that f : (D; �)!(W ;�) is a group homomorphism. Also, assume that jD j=n<1;

and jrange(f)j=m<1. Prove that mjn. Remember that range(f)<W . We want to prove that
the cardinality of the range is a factor of the cardinality of D.

Proof: We know that D/ker(f)� range(f). Since they are isomorphic:

jD/ker(f)j= jrange(f)j

Then we can easily see the following:

jD j
jker(f)j = jrange(f)j=)jD j= jrange(f)j � jker(f)j

in otherwords:
n= jker(f)j �m

Therefore, we have shown that m is a factor of n, or the cardinality of the range is a factor of the
cardinality of D.

Question: f : (Z10;+)! (Z21;+) is a group homomorphism. For each a 2Z10, find its image, or
f(a). We want to find the image of every element in Z10.

Proof: We know that jrange(f)j is a factor of jZ10j=10. This is by the result we just proved. Also,
we know that the range of f has to be a subgroup of (Z21;+). So jrange(f)j j jZ21j= 21.

=)What is the number that is
the factor of 21 and 10?

=1

Therefore, we conclude that jrange(f)j= 1. The subgroup that contains only one element is the
subgroup that contains only the identity. So we have the following:

f : (Z10;+)! (Z21;+)

is a group homomorphism, and f(a)=08a2Z10. This is called the trivial group homomorphism.
Every element in the domain maps to the identity of the co-domain.
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Question: f : (Z14;+)! (Z35;+) is a non-trivial group homomorphism. Find range(f) and ker(f).
This means that there exists at least one element in the domain that maps to an element in Z35
that is NOT 0.

Proof: Firstly, we need to observe that jrange(f)j=7 because it has to be a factor of 35 and 14,
so it is either 1 or 7. However, we know that it is a non-trivial group homomorphism, so it must be 7.

range(f)< (Z35;+)
(Z35;+);9! subgroup ofZ35with 7 elements

Z35=<1>

j5j= j15j= 35
gcd (5; 35)

=7

Therefore range(f)=<5>
=f0; 5; 10; 15; 20; 25; 30g

Now, to find the kernel:

jD j
jker(f)j = jrange(f)j

becauseD/ker(f)� range(f)

14
jker(f)j =7

jker(f)j=2
Howmany subgroupswith 2 elements dowe have inZ14?

1

=)ker(f)= f0; 7g

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 26th, 2020

Let us take a linear differential equation:

y 00=3y 0+7y= sin(t) et

Take a mapping of the following form:

f : all cont:diff: functions−!K

K is indeed a vector space, and it is therefore an Abelian group. Now consider the following:

f(h(t))=h00+3h0+7h 8h2K

f is a group homomorphism. This is because it satisfies all the requirements for group homo-
morphism, which means that we can see that f(h1+h2)= f(h1)+ f(h2). This is clear.

Since f is a group homomorphism, we porve that:

K /ker(f)� range(f) (They are isomorphic)

Recall that isomorphic means that they have the safe group structure. We know that K /ker(f)
is a group because K is Abelian and ker(f) is always a normal subgroup to K.
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Also recall that ker(f)= fset of all elements inK thatmap to e=0g. If we want to find what ker(f)
is, we need to see the definition of our function, f . We need to find all h2K st f(h)= e=0.

By our function, we have sin(t) et, which is in the range of f . Recall this from the Wednesday
lecture:

K1:K/ker(f)−! range(f) st:

K1(f1+ker(f))= f(f1)
=)9! left coset; say f1+ ker(f) st

K1(f1+ ker(f))= f(f1)−! sin(t) et

each element in the left cosetwill
map to the same function; for f1; f2; f3; ::::

wewant f(f1)= sin(t) et

f(h)=h00+3h0+7h
K1(f1+ ker(f))= f(f1)= sin(t)� et

each element in f1+ ker(f)willmap
to sin(t) et

Tofind f1; f100+3f10+7f1= sin(t) et

inDE; this is our yp (y particular)

In general, whenever we write D�L, this means that each element in D corresponds to exactly
one element in L. It means that we have a function, f :D−!L st f is group homomorphism, and
f is 1-1 and onto.

Result: f : (D; �)−! (W ;�) is a group homomorphism. f is 1-1iff ker(f)= eD. This is true for any
group homomorphism.

Proof:

=)
Assume f is 1− 1

Showker(f)= feDg
Weknow that eD2 ker(f) since f(eD)= f(eW)

since f is 1− 1 and f(eD)= f(eW);
we conclude that ker(f)= feDg

(=
Assume ker(f)= feDg

Show that f is 1− 1
Assume f(a)= f(b);prove that a= b

f(b)2W
[f(a)= f(b)] � [f(b)]−1

f(a) � [f(b)]−1= f(b) � [f(b)]−1

)f(a) � f(b)−1= eW

f(a � b−1)= eW

=)a � b−12 ker(f)
Since a � b−12 ker(f)and ker(f)= feDg;we conclude:

a � b−1= eD

a � b−1 � b= eD � b
a= b

50



Result: Let D be a finite cyclic group with n<1 elements. Then D� (Zn;+). This means that
every cyclic and thus Abelian group is isomorphic to (Zn;+).

Proof: We build the following function:

f :D−! (Zn;+)

st f is a group homomorphism. Then we show that f is 1-1 and onto.

Since D is cyclic with n elements, 9a2D st jaj=n and D=<a> . We know that (Zn;+) is cyclic
and j1j=n;with (Zn;+)=<1> .

f :D−! (Zn;+)
f(ak)=1k= k 816 k6n

f(a � a � a � � � � � a)= (1+1+1+ � � �+1)
Letx; y 2D:Show that f(x � y)= f(x)+ f(y)

x; y 2D;x= am1; y= am2

f(x � y)= f(am1 � am2)
=1m1+m2=1m1+1m2

=m1+m2

=f(x)+ f(y)
Since jD j= jZnj=n;we show that f is 1− 1

and hence itwill be onto:
Weknow that ker(f)= feDg
f(x)= 0=) f(am)= 1m=0

=)m=n

Therefore f(am)= 0
f(an)= 0 and thus f(eD)= 0

Wemap the generator to the generator:

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 28th, 2020

Result: Let (D; �) be an infinite cyclic group. Then D� (Z;+). This means that every infinite
cyclic group is isomorphic to Z under addition.

Proof:

Since D is cyclic, D=<a> for somea2D. We also know that Z=<1> . So we proceed as follows:
we build the following function mapping.

f :D−!Z

st f(am)= 1m 8m2Z. f is a group homomorphism. Why?

f(am1 � am2)= f (am1+m2)=1m1+m2

=1m1+1m2

=m1+m2

=f(am1)+ f(am2)

Weshow that f is onto:
LetK 2Z:ThenK=1K

Hencec b=aK 2D
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f(b)= f(aK)= 1K

Weshow that f is 1− 1
Wedo this by showing ker(f)= feDg:

Assume f(b)= 0 for some b2D
Show b= eD:Weare done if we do this:

Since b2<a>=D; b= am for somem2Z

=)f(b)= f(am)= 1m=0
=)m=0:Why?

j1j=1

Question: Imagine we have the following group: D=Z4�Z11. Is D a cyclic group? We did not
write the operation because we assume that it is addition. Construct all the subgroups of D.

Solution: We know (Z4;+) and (Z11;+) are both cyclic groups. Since gcd (4; 11)=1, by a previous
HW probelm, we conclude that D is cyclic.

Let H be a subgroup of D. jD j= 44. The possibilities for jH j= 1; 2; 4; 11; 22; 44. We will go
through each of the following:

jH j=1−!H = f(0; 0)g
jH j=2−!H = f(0; 0); (2; 0)g<D

If wehave cyclic; then the subgroup is unique:
jH j=4−!H = f(0; 0); (1; 0); (2; 0); (3; 0)g
This is exactly howwe proceedwith the rest:

jH j= 11−!H = f0g�Z11

::::

Fact: D=F �W , assuming that D is cyclic. If H <D, then we have the following:

H =H1�H2;whereH1<F andH2<W

The proof is technical, but it is simple. We don't need to do the proof, we can just take it as a given.

Let us have an example where this is not true.

D=Z4�Z6

Give me all the subgroups with 2 elements.

We know thatD is not cyclic
since gcd (4; 6)=/ 1

Wecan come upwithmany subgroupswith 2 elements
f0; 2g�f0g−!jH j=2
f0g�f0; 3g−!jH j=2
j(2; 3)j;H =<(2; 3)>

=f(2; 3); (0; 0)g
Butwe cannotwrite this asF �K

A subgroup of D does not necessarily have to be a subgroup of both F and K.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 2nd, 2020
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Take the following: (D; �), and fix some a2D. Now consider the following function mapping:

f :D−!D where f(d)=a � d � a−1

=)This is an automorphismmap fromD toD
f is an isomorphism:Thismeans that there is:
1: group homomorphism; 2:1− 1 and 3: onto:

f :D−!D; and fix a2D
f(d)= a � d � a−1

Let d1; d22D:Show f(d1 � d2)= f(d1) � f(d2)
f(d1 � d2)=a � (d1 � d2) � a−1

=a � d1 � a−1 � a � d2 � a−1

=f(d1) � f(d2)

Show that f is onto
Letx2D:Find some y 2D st f(y)=x

Let y= a−1 � x � a2D
f(y)= f(a−1 �x � a)= a � a−1 �x � a � a−1

=x

f :D−!D; f(d)= a � d � a−1

Show that f is 1− 1
Assume f(d1)= f(d2)

Show that d1= d2

a � d1 � a−1= a � d2 � a−1

a−1 � [a � d1 � a−1= a � d2 � a−1] � a
=)d1= d2

Def.: Let a 2D. Then C(a) = fx2D j x � a= a � xg. Recall that the center of a group, C(D), is
defined by the following:

C(D)= fy j y � z= z � y 8z 2Dg

Result: Let a2D. Then C(a)<D.

Proof: Let x; y 2C(a). Then we need to show that x−1 � y 2C(a).

x; y 2C(a):Show x−1 � y 2C(a)
=)a � (x−1 � y)= (x−1 � y) � a

Sincex2C(a); y 2C(a);
x � a= a �x and y � a= a � y

Wealso know from the notes that a �x−1=x−1 � a
Hence clearly a � (x−1 � y)= (x−1 � y) � a

Let us take the following example. Let D be a group with jD j= 12; and some a2D. Then C(a)
contains at least 2 elements.

SinceC(a)<D; jC(a)j j 12 ByLagrange
jC(a)j=2; 3; 4; 6 or 12
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Def.: Let a2D. The conjugate of a, denoted by conj(a)= fb2D j b=w � a �w−1 for somew 2Dg.
When we write b=w �a �w−1, we say that aand b are conjugate. Of course, this is for some w2D.

If a is conjugate to b, then b is also conjugate to b. We can see the following:

b=w � a �w−1

Solve for a:
w−1 � b �w= a

It does not matter how we write this.

Result: (D; �) is a group. We define � on D st a� b iff a is conjugate to b. Then we say that � is
an equivalence relation.

Proof:

Reflexive:Show a� a
Since a= e � a � e−1; (e identity inD)

Then a� a

Symmetric:Assume a� b:Show b� a
a= d � b � d−1 for some d2D

Hence d−1 � a � d= b

Thus b� a

Transitive:Assume a� b; b� c:Show a� c
a� b=) a=w � b �w−1 for somew 2D (1)
b� c=) c= d � b � d−1 for some d2D (2)
=)b= d−1 � c � d:Substitute b into (1)

a=w � d−1 � c � d �w−1

Let y=w � d−1; y−1= d �w−1

=)a= y � c � y−1

Therefore a� c

We have shown that � is an equivalence relation on D. It is interesting to note that the equivalence
relation is just a generalization of an equal, =.

D

[d]

[a]

[a] = fb2D jb� ag
Choose d2/ [a]

Fact: If � is an equivalence relation on D, then the intersection of every two distinct equivalence
classes are empty sets, and the union of all equivalence classes is D itself. This is exactly the same
way left cosets behave.
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Result: Let a2D. Recall that conj(a)=fw �a �w−1jw2Dg. Then jconj(a)j= jDj
jC(a)j . This number

tells you exactly how many elements are conjugates to a. Be careful with the fact that we are
considering the center of a, not the center of the group D.
jDj
jC(a)j is the number of left cosets of C(a). In other words, we are saying that the number of elements

that are conjugates to a is the same as the number of left cosets of C(a).

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 4th, 2020

Proof: Let L= set of all distinct left cosets of C(a), say L= fC(a); a1 �C(a); ....; an �C(a)g. We
define the following function:

f :L= fC(a); a1 �C(a); :::: ; an �C(a)g−! conj(a)

f(ai �C(a))= ai � a � ai−12 conj(a)
Weneed to show that f is 1− 1 and onto:

f :L−! conj(a)
f(ai �C(a))=ai � a � ai−1

Let b2 conj(a);hence b=w � a �w−1 for somew2D
Hence f(w �C(a))=w � a � a−1= b

Therefore f is onto:

Let ai �C(a)2L:Choose b2 ai �C(a)
Wewill show that f(b �C(a))= f(ai �C(a))

=ai � a � ai−1= b � a � b−1

All elements in the left coset are assigned to
one and only one element in conj(a):

Let b2 ai �C(a):b= ai � d for some d2C(a)
b � a � b−1=(ai � d) � a � (ai � d)−1

=ai � d � a � d−1 � ai−1

Since d2C(a); then:
ai � a � d � d−1 � ai−1

=ai � a � ai−1

Assume f(b �C(a))= f(d �C(a))
Show that b �C(a)= d �C(a)

f(b �C(a))=) b � a � b−1

f(d �C(a))=) d � a � d−1

To get b � a � b−1= d � a � d−1

we show b � d−12C(a)

b−1 � b � a � b−1 � d= b−1 � d � a � d−1 � d
a � b−1 � d= b−1 � d � a

=)b−1 � d2C(a)Since it commuteswith a
Thus f is 1− 1

55



Result: jD j= pn=)jC(D)j> p, for some prime number p. This is an extension of a previously
shown result where we said that if jD j= p2 for some p prime, then D is an Abelian group.

Proof:

Let a2D. jconj(a)j is a factor of jD j=n. Why is this true? Because jconj(a)j= jDj
jC(a)j .

Observation: Let a 2C(D). Then conj(a) = fw � a �w−1jw 2Dg= fag. Since a is already in the
center, it commutes with every element of D. Therefore we have that the conjugate of a is itself.

Recall the equivalence relation, �. If a2C(D); then conj(a)= [a] = fag. Let us take a look at D:

C(D) D

a1

a2

Let conj(a); conj(a1); conj(a2); .... ; conj(ai) be the set of all distinct equivalent classes of �, where
a1; a2; .... ; ai2/ C(D).

if b 2/ C(D), then conj(b) \ C(D) =?. Now let us take some b1 2/ conj(b) [ C(D) =) conj(b1) \
conj(b)=? and conj(b1)\C(D)=?.

This means: Let conj(b1);conj(b2); .... ;conj(bk)bealldistinctconjugateclasses st b1; b2; ... ; bk2/C(D).
Then:

D=C(D)[ conj(b1)[ conj(b2)[ � � � [ conj(bk)

=)jD j= jC(D)j+ jconj(b1)j+ � � �+ jconj(bk)j
=)From the hypothesis; jD j= pn

pn= jC(D)j+ jconj(b1)j+ � � �+ jconj(bk)j
=)jC(D)j> p

Since b1; b2; :::; bk2/ C(D), then jconj(bi)j= pni for every 16 i6 k. We have:

pn= jC(D)j+ jconj(b1)j+ � � �+ jconj(bk)j
pn= jC(D)j+ pn1+ pn2+ � � �+ pni

=)pj jC(D)j
and thus jC(D)j> p

Def.: Consider the following:

f1=( 1 2 3 ) � ( 4 5 )

f2=( 3 5 7 ) � ( 2 4 )

By staring we know that both f1 and f2 are of order 6 and they are the same type. They are
compositions of a 3-cycle and a 2-cycle.
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Result: We say that two compositions, or in our case f1 and f2 are conjugate to each other in Sn
iff they have the same type.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 9th, 2020

(Most of the lecture was a discussion of the exam with a small introduction to simple groups.)

.........................................................................................................................................................

We will first go to the second question of the exam:

Question: jD j= 65;H CD and jH j= 13. Show that D is a cyclic group.

Proof : Let x2/ H. If we show that jxj= 65;we are done: Assume there is no elements in D that
have order 65. Hence if x2D, then jxj=1; 5 or 13.

Wefirst claim jxj=5
x �H 2D/H

Since jD/H j=5; jx �H j is a factor of 5
But sincex2/ H; jx �H j=5
=)Letm= jxj; xm= e2D

(x �H)m=H 2D/H =) 5 is a factor ofm
Thereforem=5 or 65

How many subgroups of order 5 does D have? How many elements of order 5 does D have?

=)no: of elements of order 5 outside ofH:
H = 65− 13= 52 elements of order 5

Now;howmany subgroups dowe have of order 5?
IfK is a subgroupwith 5 elements; then

K has 4 elements of order 5

=)52
4
= 13 subgroups of order 5

Choose a2D st jaj=5; and chooseh2H st jhj= 13
Now let y= a �h2H and y 2/H

a �h= y 2H =) a= y �h−12H; contradiction
therefore y 2/H

=)jy j=5

H1=<a �h>−! subgroup of order 5
ConsiderH2=<a �h2> subgroups of order 5

So we can construct H1;H2; ....;H12, each with exactly 5 elements. We construct them as <a �h1>;
.... ; <a �h12> . Also, we have <a>=H13.

D has 13 subgroups, call them F1; F2; .... ; F13, where F1=<a1>;with ja1j=5 and so on for all: We
constructed Hi=<a1 �hi> , and we know that H13=<a1> , because we are doing � with e.

Proof was not completed and left here after some complications.

.........................................................................................................................................................
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Def.: Let (D; �) be a group. We say that (D; �) is simple iff fegCD. This means that D has no
non-trivial normal subgroups.

Observation: D is a finite Abelian group. Then D is simple iff jD j= p for some p prime. The
concept of simple groups become more interesting if our group is not Abelian.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 11th, 2020

.........................................................................................................................................................

Question 2 of the exam needs a special case of Sylow's theorem, which was not introduced to us
before. Therefore it is removed. However, the case is mentioned below now.

.........................................................................................................................................................

Fact: Assume that q1; q2 are two distinct prime numbers and q1<q2. Assume we also have a group,
(D; �); st jD j= q1� q2. If q1 is not a factor of (q2− 1), then D is a cyclic group.

Result: Let (D; �) be a group and H CD; K CD stH �K =D; or in other words jH j � jK j =
jD j andH \K = feg. Then we have the following: D�H �K�D/K �D/H.

Proof: To prove that this isomorphism is true, we show group homomorphism first and then show
that it is 1-1 and onto. We take the following function mapping:

f : (D; �)−!D/H �D/K

f(d)= (d �H; d �K); assumingD is finite
We show that f is group homomorphism:

f(d1 � d2)= (d1 � d2 �H; d1 � d2 �K)
=(d1 �H; d1 �K)� (d2 �H; d2 �K)

=f(d1)� f(d2)

What is jD/H �D/K j? It is jD/H j� jD/K j= jD j. If we show equality between jD/H �D/K j
and jD j, it would suffice to show that f is 1-1 [Fact: f :S−!L; jS j= jLj, then f is 1-1 iff f is onto].

We have that jD/H �D/K j= jDj
jH j�

jDj
jK j=

jDj �jDj
jH j � jK j . Since H �K=D andH \K=feg, we conclude

that jD/H �D/K j= jD j.

So far, we have that f is group homomorphism, and jD/H �D/K j= jD j. To show that f is
bijective, we only need to show that f is 1-1.

f : (D; �)−!D/H �D/K;

with f(d)= (d �H; d �K)
To conclude f is 1− 1;we show

ker(f)= feg

Assume f(b)= (e �H; e �K) for some b2D
Show that b= e

f(b)= (b �H; b �K)= (e �H; e �K)
=)b �H = e �H; b �K = e �K

b2H and b2K
=)b2H \K

and b= e sincewe assumedH \K = feg
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We have proven that D�D/K �D/H. Now we have to show that D�H �K. Let us define the
following mapping:

L:D−!H �K

Let d2D:SinceD=H �K; then
9h2H and k 2K st d=h � k

L(d)=L(h � k)= (h; k):
Show thatL is well defined:

Assume d=h1 � k1=h2 � k2
Show thath1=h2 and k1= k2

h1 � k2=h2 � k2=)
h2
−1 �h1 � k1= k2

=)h2
−1 �h1= k2 � k1−1

h2
−1 �h12H and k2 � k1−12K

k2 � k1−12H \K;h2
−1 �h12H \K

k2 � k1−1= e and thus k1= k2

similar argument to show h1=h2

ThereforeL is well defined

L:D−!H �K;L(d)= (h; k)
where d=h � k;both unique:
jD j= jH �K j= jH j � jK j

To showL is bijective;wehave to show
L is 1− 1;by concluding ker(L)= feg

L(d)= (h; k)= (e; e)
=)h= e; k= e

ker(L)= feg and thusL is 1− 1

To showL is group homomorphism;
weplay the same game as usual:

Let us take an example, say jD j= 35;withH CD andKCD: jH j=7 and jK j=5. Prove that D is
a cyclic group.

jH �K j= jH j � jK jjH \K j =
7� 5
1

= 35

sinceH \K = feg
H �Z7 andK �Z5

SinceH CD andK CD;H �K=D

withH \K= feg; D�H �K
D�Z7�Z5

�Z35

Therefore we have shown that, through the isomorphism of D to Zn, that D is a cyclic group given
its specifications and assumptions in the question.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 16, 2020
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Recall that if H andK are subgroups of D, then:

jH �K j= jH j � jK jjH \K j

Also recall the special case of Sylow's theorem. We will now proceed with some examples as
practice.

Question: (D; �) is a group with jD j=39. AssumeD has normal subgroups,H;K with the following
properties: jH j=3 and jK j= 13. Prove thatD is cyclic.

Solution: We use the following facts. jD j= 39;H CD andK CD;with jH j=3 and jK j= 13.

jH �K j= jH j � jK jjH \K j =
3� 13
1

= 39

jH \K j=1 sinceH \K= feg
gcd (13; 3)=1

Since jH �K j= 39;H �K=D

ThereforeD�H �K
Since jH j=3;−!H �Z3

andK �Z13

D�Z3�Z13

because gcd (3; 13)= 1; D is cyclic and
D�Z39under addition

Result: Cauchy's Theorem: Let jD j=n and q jn;where q is prime. Then D has an element of order
q. This result also means that D has a subgroup with q elements.

Remember that if D is Abelian and we have a subgroup with m elements, then we must have an
element of order m.

Proof: Assume jD j= q. Then D�Zq and we are done because each non-identity element will have
order q by Lagrange's theorem.

This is how we proceed with induction for groups:

Assume result is true
for every group of orderm;m<n

ConsiderC(D); center ofD
Wehave two cases:Firstly:

1:
Assume q j jC(D)j

Remember that the center; C(D); is Abelian
since q j jC(D)j;we conclude thatC(D)
has a subgroupwith q elements; sayH

HenceH �Zq; and thusH has an element
of order q; and sinceH <D=)D has an element

of order q:Thereforewe are done:

2:
Assume q is not a factor of jC(D)j
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Recall if a2D; jconj(a)j= jD j
jC(a)j

Recall: if jD j=n; then:
jD j= jC(D)j+ jconj(a1)j+ jconj(a2)j+ � � �+ jconj(ak)j

for some a1; a2; ::::; ak2/ C(a)
=)By staring;we can see that:

9ai; 16 i6 k st q is not a factor of jconj(ai)j
jconj(ai)j=

jD j
jC(ai)j

=)jconj(ai)j � jC(ai)j= jD j
=)q is not a factor of jconj(ai)j=) q j jC(ai)j

Weknow thatC(ai)=/ D because ai2/D
C(ai)<D and jC(ai)j<n

wehave that:
q j jC(ai)j and jC(ai)j<n

=)by hypothesis; C(ai)will have an element of order q
=)D has an element of order q

Recall from the HW that if H <D and [H:D] = 2= jDj
jH j (number of all left cosets of H), then we

have that H CD. We will use it in the following result.

Fact: H <D and [H:D] = q, where q is the smallest prime factor of jD j. We conclude that H is
a normal subgroup of D, H CD. This is obviously a general case of the HW proof.

Application of Theorem: Take an Abelian group, D: jD j= p3;where p prime. Porve that D�Zp3;
D�Zp�Zp2, or D�Zp�Zp�Zp.

To help, if we have K1�K2� � � � �Kn= f(a1; a2; ....; an)j a12K1; a2 2K2; ....; an2Kng. As an
example of this, we will also see the order: For K1�K2�K3; j(a1; a2; a3)j= lcm (ja1j; ja2j; ja3j).
Common mistake for the lcm of three numbers:

lcm (4; 6; 5)=/ 4 5 6
gcd (4; 6; 5)

We have to take two steps: First we calculate the lcm of any two of the numbers, and then take
that and find the lcm with whatever number remains.

lcm (4; 5; 6)

=lcm (4; 5)= 4 5
gcd (4; 5)

= 20

=)lcm (20; 6)= 20 6
gcd (20; 6)

=60

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 18th, 2020

Recall that if we have a group with jD j= q1� q2 and we have that q1 is NOT a factor of (q2− 1),
then we conclude that D is a cyclic group.

Also recall the following result: let (D; �) be a group and H C D; K C D st H � K = D;
or in other words jH j � jK j= jD j andH \K = feg. Then we have the following: D �H �K �
D/K �D/H.
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Finally, recall that if H <D andK <D, then:

jH �K j= jH j � jK j
jH \K j

Result: Caley's Theorem: Let D be a finite group st jD j= n. There exists a subgroup, L, of
Sn; stD�L. All finite groups are nothing but a subgroup of Sn in terms of the structure of the
group itself.

Proof: We will build the following function mapping:

F :D−!Sn

8d2D;F (d)=
�

e d2 d3 :::: dn
d � e d � d2 d � d3 :::: d � dn

�
Thismap is definitely bijective by staring

Remember that the domain of F isD
the co-domain of F isSn

Wewill show thatF is group-homomorphism:
Letx; y 2D

F (x � y)=
�

e d2 d3 :::: dn
x � y � e x � y � d2 x � y � d3 :::: x � y � dn

�
Weneed to show thatF (x � y)=F (x) �F (y)

=)F (x) �
�

e d2 d3 :::: dn
y � e y � d2 y � d3 :::: y � dn

�
=
�

e d2 d3 :::: dn
x � y � e x � y � d2 x � y � d3 :::: x � y � dn

�
ThereforeF (x � y)=F (x) �F (y)

Weshow that ker(F )= feg
Letw 2 ker(F )

F (w)=
�

e d2 d3 :::: dn
w � e w � d2 w � d3 :::: w � dn

�
=
�
e d2 d3 :::: dn
e d2 d3 :::: dn

�
=)w � e= e

=)w= e

ker(F )= feg

By 1st isomorphism theorem;
D

ker(F )
� range(F )

D
feg =D

D� range(F )<Sn

The original theorem was that our group,D, is isomorphic to a subgroup of Sn. This is exactly what
we show here since range(F ) is a subgroup of the co-domain, Sn. In other words, let L= range(F ).
Then we have that L<Sn andD�L.
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Recall the definition: (D; �) is simple iff feg is the only normal subgroup of D.

Result: Take An;withn> 5.We know that AnCSn and jAnj= n!

2
. The theorem says that An is a

simple group for every n> 5.
Recall that (Zn� ;�) is a group iff n is a prime number.

Fact: (Zq�;�), where q is prime, is a cyclic group. For example, we can see the fact in the following:
Let us take (Z11

� ;�)=<a>; jaj= 10.

Def.: Let us consider n> 2. Then:

U(n)= fa2Zn
� j gcd (a; n)= 1g

For example, if we have n=7,

U(7)= fa2Z7
�jgcd(a; 7)=1g

U(7)= f1; 2; 3; 4; 5; 6g=Z7
�

U(10)= f1; 3; 7; 9g=/ Z10
�

jU(10)j=4= '(10)

Observe that forn> 2; jU(n)j= '(n)

Recall the following result from earlier in the semester: (U(n);�) is an Abelian group with exactly
'(n) elements.

Result: We have that U(n)�Zq1−1�Zq1
�1−1� � � � � Zqk−1�Z

qk
�k−1. This comes from how we

generate '(n).

Consider the following example:

n=73 � 52

'(n)= 6 � 72 � 4 � 5
U(n)�Z6�Z49�Z4�Z5

Wecan simplify this further
For example;Z4�Z5�Z20

=)U(n)�Z294�Z20

The proof of this relies on Sylow's theorem, so we will just take it as a fact rather than going
through the entire proof.

Note: Using the prime factorization, we can write '(n) as one of the two:

'(n)= (q1− 1)q1�1−1 � � � � � (qk− 1)qkak−1

'(n)= (q1
�1− q1

�1−1)(q2
�2− q2

�2−1) � � � � � (qk
�k− qk

�k−1)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 23rd, 2020

Def.: We have H <D. This could be either a normal subgroup or any other type of subgroup.
What does N(H) mean?

N(H)= fx2D jx �H =H �xg
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This is called the normalization of H inD. In street language, it is the set of all elements in D
where the left cosets of H are the same as the right cosets of H.

If we have that H CD, then N(H) =D. This is trivial, but the concept of the normalization is
interesting when H is NOT normal in D. Further, it is interesting if our group, D, is not Abelian.

N (H)D

H

By default,H will be a normal subgroup of N(H). N(H) is the largest subgroup of D stHCN(H).

Result: N(H)<D, and clearly H CN(H)
Proof:

Let x; y 2N(H)
Show thatx−1 � y 2N(H)

Sincex; y 2N(H);weknow:
x �H =H �x and y �H =H � y

Weshow that
x−1 � y �H =H �x−1 � y

Since y �H =H � y=) y �H � y−1=H

x �H =H �x=)x �H �x−1=H

Since y �H � y−1=H andx �H �x−1=H;

we conclude that:
x−1 � y �H � y−1 �x=H

=)x−1 � y �H =H �x−1 � y

Therefore, we have shown that x−1 � y 2N (H) and thus N(H) is a subgroup of D.

Question: H <D, with jD j= 100. Given that jN(H)j> 50, prove H CD.

If we prove that N(H)=D=)H CD. Therefore this is the roadmap that we will take to prove
this question.

Solution:

SinceN (H)<D; jN(H)j j jD j
jN(H)j> 50 by the question

Therefore jN(H)j= 100j jD j= 100

Since jN(H)j= jD j;H CD

Recall the definition of a simple group: fegCD. The identity is the only normal subgroup of D.
Also that An;withn> 5 is simple.
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Consider the following example:

�=( 1 2 3 4 5 )2A5
j�j=5

Let us take someH
H = f�; �2; �3; �4; eg

Wehave the following three statements:
1:H is never a normal subgroup of A5 (True)

2:8a2A5; a �H =/ H � a (False)
3:For somea2A5; a �H =/ H � a (True)

If we were told that D is simple, is it possible that D has non-trivial subgroups? Yes, it is possible.
However, if we asked can D have non-trivial NORMAL subgroups, then it is not possible.

Take the following statement:

(Z2;+)< (Z4;+)

Is this statement correct or wrong? This is clearly wrong, because when we are in Z2, we are
taking the addition modulo 2, whereas it is addition modulo 4 in Z4. They are two different binary
operations and even though Z2 is a subset of Z4, the fact is that it cannot be a group because of
the difference in the binary operation.

However, (Z4;+) has a subgroup that is isomorphic to (Z2;+). How is this true? We have that Z4
has a subgroup with 2 elements, and this is clearly a cyclic subgroup. Using a previous result, we
know that every cyclic subgroup is isomorphic to some Zn under addition.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 25th, 2020

Result: Given the following:

U(n)= fa2Znj gcd (a; n)= 1g;with jU(n)j= '(n)

Aut(Zn)= ff : (Zn;+)−! (Zn;+)j f is group-isomorphicg

Then we have that (Aut(Zn);�)� (U(n);�). Note that Aut(Zn) is the set of all group isomorphisms
from (Zn;+) onto (Zn;+). We show that (Aut(Zn); �) is isomorphic to U(n).

What can we get out of this result? (Aut(Zp);�)� (Zp�;�). Note that U(p)=Zp
� where p is a prime

number. This means that for all p prime, (Aut(Zp); �) is always a cyclic group.

For example, let us take Aut(Z12). This is going to be isomorphic to (U(12);�). This means that
the structure of the two groups are the same.

How many group isomorphisms are there from (Z12;+) to (Z12;+)? The answer is jAut(Z12)j=
jU(12)j= '(12)=4.

Proof:

Let a2U(n)
Fa: (Zn;+)−! (Zn;+) st

Fa(x)= a x(modn)
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a is fixed:
Our claim is thatFa is a group-isomorphism

from (Zn;+) to (Zn;+)

−!Weshow thatFa is a group-homomorphism
Let x; y 2Zn

F (x+ y)=a(x+ y)= a x+ a y

=Fa(x)+Fa(y)

−!Show thatFa is onto
Let b2Zn:Show that 9w 2Zn st

Fa(w)= b

Remember thatFa(x)= a x(modn)
−!w=a−1 � b2Zn

Fa(a−1 � b)=a � (a−1 � b)= b

−!Show thatFa is 1− 1
Weshow that ker(Fa)= f0g

Let x2 ker(Fa):Weshow thatx=0
x2 ker(Fa)=)Fa(x)= 0=a x

=)a x=0=) a−1 � a �x= a−1 � 0=)x=0

We have shown that Fa is a group-isomorphism, for some a 2U(n). We emphasize the fact that
Fa2Aut(Zn). This means that each function in Aut(Zn) is a group-isomorphism.

Sub-Result: Let K 2Aut(Zn). then K=Fa for some a2U(n). We use the same function mapping
for Fa.

Proof:

GivenK: (Zn;+)−! (Zn;+)
stK is a group-isomoprhism

Show that 9a2U(n) stK(b)= a b(modn)
8b2Zn

=)K=Fa

Let a2K(1)
Show thatK(x)=a x(modn)8x2Zn

K(0)=a � 0=0
K(1)= a � 1= a

−!AssumeK(x)= a x for somex2Zn

−!Show thatK(x+1)=a(x+1)
=K(x)+K(1)becauseK is group-homomorphism

=ax+ a=a(x+1)

What we learned: If K 2Aut(Zn), then 9a2U(a) st K(x)=ax(modn)8x2Zn−!wherea=K(1).
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Question: Find all elements of Aut(Z12):

Solution:

U(12)= f1; 5; 7; 11g
F1: (Z12;+)−! (Z12;+)

F1(x)=1 �x(mod12)8x2Z12

F5: (Z12;+)−! (Z12;+)
F2(x)=5 �x(mod12)8x2Z12

and so on:

Now we can prove the original result; that (Aut(Zn); �)� (U(n);�).

Proof:

Define the following function mapping:

L:U(n)−!Aut(Zn)

L(a)=Fa8a2U(n)
Recall the definition of Fa:
Fa: (Zn;+)−! (Zn;+) st

Fa(x)= a x(modn)8x2Zn

Show thatL is a group-homomorphism
L(a� b)=L(a) �L(b)

Fa�b=Fa �Fb
Fa�b(x)= a b x 8x2Zn

Fa(x)= a x 8x2Zn

Fb(x)= b x 8x2Zn

Fa �Fb(x)=Fa(b x)=a b x=Fa�b(x)

L is clearly onto because of our sub-result
ChooseK 2Aut(Zn);K=Fa for some a2U(n)

=)L is onto

We show thatL is 1− 1
By showing ker(L)= f1g

Let b2 ker(L)=)L(b)=Fb(x)= e

=)Fb(x)= b x=x8x2Zn

Note that b2U(n)
=)Fb(b)= b2= b=) b−1 � b2= b−1 � b

=)b=1
=)ker(L)= f1g

Result: (U(n);�) is cyclic iff =2; 4; or 2 pm for some prime, p; andm> 1. Proof will be covered in
the next lecture.
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Let us take an example first:

ConsiderU(50)
50=2� 52

By our result; U(50) is cyclic

ConsiderU(100)
100=22� 52

By our result; U(100) is not cyclic

If we consider U(100), we know by this result that we cannot have an element of order '(100),
because jU(100)j= '(100). Since '(100) = 40 and the order of a subgroup or an element must
divide '(100), this means that each subgroup of U(100) will have at most order 20.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

November 30th, 2020

Consider U(n). Of course, we know that U(n) is Abelian group under multiplication modulo n.
We have the following cases and subcases:

1. n=2m form> 1

a) m=1; U(n)= f1g

b) m=2; U(n)= f1; 3g=<3>�Z2

c) m> 3; U(n)=U(2m)�Z2�Z2m−2

m=7−!U(27)�Z2�Z25�Z2�Z32

m=3−!U(8)�Z2�Z2

2. n= pm;m> 1; pprime; p=/ 2

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
know

U(pm)�Zp−1�Zpm−1, from previous idea introduced in lecture. Note that p=2 is
exceptional because '(2m)=2m−1butwehave thatU(2m)�/ Z2m−1. In fact, as noted above,
U(2m)�Z2�Z2m−2.

For what values of m is U(2m) cyclic?

m=1−!U(2)= f1g−! cyclic.

m=2−!U(4)�Z2

m> 3−!U(2m)�Z2�Z2m−2, not cyclic.

Therefore we can see that U(2m) is cyclic iff m=1; 2.

U(pm)�Zp−1�Zpm−1() cyclic because we have that gcd (p− 1; pn−1) = 1. Therefore we
conlcude that U(n) is cyclic forn= pm; p prime andm> 1. In fact, if we have m=1, we get
U(p)= (Zp�; �)� (Zp−1;+)

Question:

TakeU(210); a2U(210) st
jaj=n is a maximum

Find the value of n. What is the approach we take to solve a question like this?

Solution:

U(210)�Z2�Z28=D

max: order of an element isD
Recall j(a; b)j= lcm (jaj; jbj)= 28

becauseZn is cyclic in general
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Remember that jU(210)j= '(210)=29.

Question:

TakeU(312); a2U(312) st
jaj=n is a maximum

Solution:

Weknow thatU(312) is cyclic
jU(312)j=2 � 311

Hencen=2 � 311because the group is cyclic
and thus if n ismaximum; it must be 2 � 311

Let us take n=2 pm;m> 1; p prime and p=/ 2. Then we have that '(n)= (p− 1)pm−1 and:

U(2pm)�Zp−1�Zpm−1 is cyclic

Further, we have that U(2pm)� (pm)�Zp−1�Zpm−1 because isomorphism is a transitive opera-
tion. The number of elements in U(2pm) is the same as the number of elements in U(pm).

So far, we know that U(n) is cyclic if n= 2; 4; pm or 2pm: p is prime andm> 1. Are ther any other
values for n? No. This is all we have.

Consider n= p1
�1p2

�2, where p1 and p2 are two distinct odd primes.

'(n)= (p1− 1)p1�1−1� (p2− 1)p2�2−1

U(n)�Zp1−1�Zp1
�1−1�Zp2−1�Zp2

�2−1

Zp1−1�Zp1
�1−1 is cyclic; even order

Zp2−1�Zp2
�2−1 is cyclic; even order

The direct sum of both is even order
in fact;

U(n)�Zp1
�1−p1�Zp2

�2−p2
−!This is not cyclic

Fact: Take the following:

n= p1
�1 � p2�2 � � � � � pk�k

U(n)�U(p1�1)�U(p2�2)� � � � �U(pk
�k)

We always have even, and the gcd between any two cannot be 1. This means that we cannot have
cyclic if this were the case.

Result: U(n) is cyclic iff n=2; n=4; n= pm; n=2pm; p is prime; p=/ 2 andm> 1.

For example, if we take U(4 � 35), it is isomoprhic to U(4)�U(35)�Z2�Z2�Z34. The Z2�Z34
poses an issue because it is not of even order and therefore we know that U(4 � 35) is not cyclic. It
cannot be generated by one element.

69



Classifcation of Finite Abelian Groups (up to isomorphism):

This whole concept relies on the following result previously introduced in the lecture.

Recall: H CD;K CD;D=H �K andH \K= feg:This impliesD�H �K.

HW Question:

jD j= p2:Prove thatD�Zp2 orD�Zp�Zp

Solution:

D is Abelian:Since p j jD j
=)D has an element of order p;

say a
=)H =<a>

Choose b2/ H:Hence jbj= p or p2

If jbj= p2=)D is cyclic
=)D�Zp2

Assume jbj= p

LetK =<b>

K is a subgroup ofDwith p elements
H \K = feg

H �K =D and thusD�H �K
=)D�Zp�Zp

Question: Upto isomorphic, classify all Abelian groups with p3 elements.

Solution:

AssumeD is not cyclic:
LetH <Dwith p2 elements
HenceH CD because p2jp3

There existsa2/ H st jaj= p

Assumewewere able to prove this
K=<a>with p elements;KCD sinceDAbelian

K \H = fegbecauseK cannot be insideH
sinceK =<a>

K \H = feg−!H �K=D

D�H �K
D�Zp�Zp2 orD�Zp�Zp�Zp

IfDwas cyclic; D�Zp3

D has to have one of these three structures, but it is important to note that the three different
groups are not isomorphic to one another. They have completely different structures.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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December 7th, 2020

Invariant Factors of Finite Abelian Groups:

We first need to agree that Zmn�Zn�Zm iff gcd (m;n)= 1.

Proof:

(Sketch) Since mjnm and njnm, there is a normal subgroup of Zmn, say H,with n elements, and
a normal subgroup F of Zmn with m elements.

Since gcd (m; n) = 1, H \ F = feg. Hence H � F = Zmn, and by a class result, we know that
Zmn�H �F . Since H and F are both cyclic and every cyclic group is isomorphic to some Zn, we
can conclude that:

H �Zn; F �Zm

=)Zmn�Zn�Zm

For example, Z11�17�Z17�Z11. We will need this result to move forward with invariant factors.

Result:

D=Zk1�Zk2� � � � �Zkn�Zm1�Zm2� � � � �Zmw

such that the following property holds true: m1jm2jm3j .... jmw. In other words, m1 is a factor of
m2, which is a factor of m3, all the way to mw. They are continuous factors of one another until
the end. Furthermore,m1;m2; ...mw are all unique. This means thas eachmi is completely distinct.

Question:

Consider the following group:

D=Z15�Z9�Z10

Find the invariant factors of D.

Solution:

D�Zm1�Zm2� � � � �Zmw

st eachmi is a factor of the nextmi+1

D�Z3�Z5�Z9�Z2�Z5

D�Z15�Z90; and thus:
m1= 15;m2= 90

These two are clearly unique by our result

We can write D�Z3�Z5 ��Z90. However, although this is true in terms of isomorphism, there
is only one way of writing D in terms of its invariant factors. In this, clearly 3 is not a factor of 5.

Question:

D=Z8�Z6�Z12

Find the invariant factors of D.
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Solution:

D�Zm1�Zm2� � � � �Zmw

stm1jm2j :::: jmw

Wecan see thatD�Z8�Z3�Z2�Z12

Wecombine theZ8 andZ3 since gcd (8; 3)=1
D�Z2�Z12�Z24

m1=2;m2= 12;m3= 24

There is no algorithm to this. We simply have to try and see what we can get. Notice that in the
above example, we know that the last term, mw, is given by: lcm (8; 6; 12)=24. So we need to try
to see how we can play with the isomorphism to get all the mi to be a factor of 24.

Question:

D�Z17�Z19�Z29

Solution:

In this example, we clearly know that since the gcd between the three numbers is 1, then:

D�Z17�19�29;withm1= 17� 19� 29

We are done. We only have one invariant factor in this case.

Question:

D�Z4�Z16�Z32

In this case, we know that each of them are clearly factors of the one that follows, and thus m1=4;
m2= 16 andm3= 32.

Classification of Finite Abelian Groups:

Question:

Upto isomorphism, classify all Abelian groups with 81 elements. Note that (81=34). This means
that we want to list all possible non-isomorphic groups in terms of direct sums of Zn.

So if we have one particular Abelian group that has 81 elements, let us call it D, then D is
isomoprhic to one and only one of these structures in the list.

Let us make a table to see this example. Note that all of these structures are NOT isomorphic to
each other.

Partitions of 4 structures with 81 elements
1+1+1+1 Z3�Z3�Z3�Z3
2+2 Z9�Z9
1+3 Z3�Z27
1+1+2 Z3�Z3�Z9
4 Z81 (cyclic)

Table 4.
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Fact: D�F iff the invariant factors of D equal the invariant factors of F . If we use this result,
we can get the structures essentially for free.

Question:

Imagine we were told that D has 81 elements and D has an element of order 27. Upto isomorphic,
find all possible groups that D is isomorphic to.

Solution:

We simply go to the table we just created and look at it to see in each of the 5 options, an element
of order 27 could exist.

There are the following:

D�Z3�Z27

D�Z81

These are the only two possibilities. No matter what we do, these are the only two possibilities for
the structure of D. Note that (Reminder) D is Abelian.

Question:

Imagine D has 81 elements and it has an element of order 27, and D is not cyclic. What are the
possible structures of D upto isomorphism?

Solution:

To add on to the previous question, we know that the group Z81 is cyclic, because it contains the
same number of elements as D. This new piece of information shows us that the only possible
group structure for D is: Z3�Z27.

Question:

Upto isomorphism, classify all finite Abelian groups with 36 elements.

Solution:

We first start with the prime factorization of 36.

36=32 � 22

Note that D�H �K;where jH j=9 and jK j=4;withH \K = feg.

We will proceed by doing two tables:

Partitions of 2 32= jH j 22= jK j
2 Z9 Z4
1+1 Z3�Z3 Z2�Z2

Table 5.

Here are all our choices for the possible structures for D:

Z9�Z4 (1)
Z9�Z2�Z2 (2)
Z3�Z3�Z4 (3)

Z3�Z3�Z3�Z3 (4)
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We can rewrite these 4 in terms of their invariant factors:

Z36 (1)
Z2�Z18 (2)
Z3�Z12 (3)
Z6�Z6 (4)

None of them are isomorphic to each other because their invariant factors are not the same at all.

As a quick example, if we said our group has an element of order 18, then clearly the possible
structures are either (1) or (2). If we instead said that our group is not cyclic, then the only
possibility would be (3), since the rest are all cyclic groups.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

December 9th, 2020

Let us look back and remember some facts:

1. jU(n)j= '(n)

2. (U ; �) is a cyclic group iff n=2; 4; pm; 2pm where p is an odd prime number with m> 1

3.

n= p1
�1 � p2�2 � � � � � pk�k

U(n)�U(p1�1)�U (p2
�2)� � � � �U(pk

�k)

4. U(2m)�Z2�Zm−2, with m> 3

5. Finally, U(pm)�Zp−1�Zpm−1

Let us take an example. Consider n=26� 53� 72. Then we know that:

U(n)�U(26)�U(53)�U(72)

U(n)�Z2�Z24�Z4�Z52�Z6�Z7

Now, what do we need to do to find the invariant factors?

U(n)�Zm1�Zm2� � � � �Zwk
Wecanfindwk= lcm (2; 24; 4; 52; 6; 7)

wk=24 � 52 � 3 � 7

Alternatively;we can use the formula:

lcm (a; b)= a� b
gcd (a; b)

let a= p1
�1 � � � � � pk

�k

and let b= q1
�1 � � � � � qm

�m

Wecanfind the commonprimes between a and b
call them f1; f2; :::: ; fl

gcd (a; b)= f1
min(�1;�1) � � � � � fl

min(�l;�l)

lcm (a; b)= f1
max(�1;�1) � � � � � fl

max(�l;�l)

we also add allmissing primes to this:
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Consider the following example to make this clear:

a=32 � 53 � 72 � 210

b=23 � 72 � 3

gcd (a; b)= 23 � 72 � 3
lcm (a; b)= 210 � 32 � 72 � 53

Question:

n=25 � 32 � 72

Write U(n) is terms of its invariant factors

Solution:

U(n)�U(25)�U(32)�U(72)
�Z2�Z23=8�Z3�Z6�Z7

But these are not invariant factors:

mw=7 � 6 � 8
WehaveZ7�6�8 as our last term

Z2�Z6�Z7�6�8

Another example:

ConsiderU(25 � 3 � 52)
U(n)�U(25)�U(3)�U(52)

�Z2�Z8�Z2�Z4�Z5

mw= lcm (2; 8; 2; 4; 5)= 5 � 8
�Z2�Z2�Z4�Z5�8

Therefore:
m1=2;m2=2;m3=4;m4= 40

Question:

Classify all finite Abelian groups upto isomorphism of order 23 � 32 � 53.

Solution:

We will proceed by making the table for the partitions

Partition of 3 Partition of 2 order 23 order 32 order 53

0+3 0+2 Z8 Z9 Z125
1+2 1+1 Z2�Z4 Z3�Z3 Z5�Z25
1+1+1 Z2�Z2�Z2 Z5�Z5�Z5

Table 6.

Counting the number of choices, we will have exactly 2�3�3 non-isomorphic groups of our order.
This means there is a total of 18 structures for our group of order 23 � 32 � 53
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Introduction to Rings:

We have (R;+; �), a set R with two binary operations, + and � . It needs to satisfy the following
conditions:

1. (R;+) is an Abelian group

2. (R; �) is a semi-group (Recall that this means it has closure and is associative)

3. 8a; b; c2R;wewant a � (b+ c)= a � b+ a � c. This is the distributive property, both from the
right and the left. i.e. (b+ c) � a= b � a+ c � a

A ring is any structure that satisfies these three properties. Our set does not need to be Abelian
under �, but it definitely needs to be Abelian under +.

If (R�; �), where R�=R−additive identityofR, is Abelian, we say that R is a field. A field is a ring,
but in the second condition, we remove the additive identity and see whether we have an Abelian
group rather than a semi-group.

Let us see some examples of rings:

(Z;+;�) is a ring

This is because Z under addition is an Abelian group and Zunder multiplication is a semi-group.
In fact, this is a commutative ring. This is because Z under multiplication is the same regardless
of order. a� b= b� a.

(R2�2;+; �) is also a ring

This, however, is not a commutative ring, because the order of multiplication matters in the context
of 2� 2 matrices.

The set of all continuous functions under addition and composition (semi-group, but non-commu-
cative) is also a ring.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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